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Abstract 

The combination of forward-error-correction (FEC) and interleaving can be used to improve 

free-space optical (FSO) communication systems. Recent research has optimized the 

codeword length and interleaving depth under the assumption of a fixed buffering size, 

however, how the buffering size influences the system performance remains unsolved. This 

paper models the system performance as a function of buffering size and FEC recovery 

threshold, which allows system designers to determine optimum parameters in consideration 

of the overhead. The modelling is based on statistics of temporal features of correct data 

reception and burst error length through the measurement of the channel good time and 

outage time. The experimental results show good coherence with the theoretical values. This 

method can also be applied in other channels if a Continuous-Time-Markov-Chain (CTMC) 

model of the channel can be derived. 

Keywords: FEC codeword length, interleaving depth, FSO communication, CTMC 

model 

1. Introduction 

Free-space optical communication, which benefits from its high rate, flexible installation and 

licence-free spectrum, is now a hot topic again as the devices required have been developed 

rapidly over the last several years. The review [1] systematically introduces all aspects of 

FSO communication. It’s widely known that FSO communication systems are vulnerable to 

weather effects and atmospheric turbulence as well as pointing errors. As a result, adaptation 

methods and transmission protocols are being actively studied. 
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FSO transmission provides high-speed connections for disaster recovery and temporal 

networks. However, for many scenarios such as real-time transmission and broadcasting, 

retransmission is either expensive or impossible to implement, so using forward error 

correction (FEC) is promising and has been widely studied [2][3][4]. Recent reviews [5] and 

[6] give an overview of coding methods for optical transmission. An important aspect of FEC 

coding is the selection of the code rate and codeword length, and it is introduced in [7]. 

Interleaving is also necessary because in high speed FSO transmission, an outage caused by 

atmospheric turbulence, which often lasts for several milliseconds, will cause a burst of 

packet erasures. The long burst error means that the interleaved FEC buffering size will be 

very large and optimization between the FEC codeword length and interleaving depth is 

necessary. Optimization between the codeword length and interleaving depth was first 

discussed with consideration of overhead [8], with the assumption of constant buffering size, 

which means the product of codeword length and interleaving depth is fixed. And based on 

that, later work [9] proposed a near-perfect interleaving depth to define an upper bound of the 

effective interleaving depth and used the interleaving-first (IF) algorithm to achieve better 

performance with lower complexity of coding and decoding. Recent work [10] focuses on 

reducing FEC processing delay by adopting a short block size and controlling the interleaving 

depth flexibly. 

These studies discuss the optimization of codeword length and interleaving depth all based on 

the assumption that the total buffering size is fixed. However, the buffering size is determined 

by designers and its optimization also needs to be considered. Current studies are usually 

based on average features of errors such as the probability of bit or packet error and the 

correlation factor, instead of temporal features such as the error length or outage time 

distribution function, which is essential in buffering size and FEC recovery threshold 

determination. 
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It’s widely known that the performance of FSO transmission systems is affected by various 

factors. In [11] and [12], Markov chains are used to model FSO channels but do not give the 

required statistical features of errors. However, a definition of Time Share of Fade (TSF) has 

been proposed [7] to describe the probability of the fading time being larger than fT . 

Similarly, there have been measurements of the statistics of channel good time [13]. Using 

these results, we can conclude the statistical features of channel good time and outage time, 

and based on that, the distributions of burst error length and correct data length can be 

calculated with a given transmission time of the packet, according to which we can design 

channel-aware adaptation methods. 

This paper proposes a model of system performance as a function of buffering size and FEC 

code rate, based on a CTMC model of an FSO channel. This approach allows us to optimize 

the FEC and interleaving strategy without fixing the product of FEC codeword length and 

interleaving depth. The model is verified through comparison with data from Monte-Carlo 

simulations. 

The paper is organised as follows: Section 2 introduces the channel model we use. Section 3 

proposes the system performance model and analyses the packet layer FEC codes and 

interleaving without fixed buffer size. Section 4 simulates the system and analyses the 

principle of the simulations we implement. Section 5 discusses the simulation results and the 

comparison of the calculated and simulated values of system performance. Finally, 

conclusions are drawn in Section 6. 

2. FSO Channel Model 

2.1 Discrete-Time-Markov-Chain (DTMC) Model 
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We assume that FEC is used at the packet level so that the channel can be considered as a 

binary erasure channel (BEC), which means the packet is either correctly received or 

discarded. Therefore, a general Gilbert-Elliot (GE) model [14], which is widely used when 

considering FEC coding and interleaving, is shown as Fig. 2.1. In the model, the channel 

condition is summarized by two states: good (or the channel is ON) and bad (or the channel is 

OFF). The channel good state is defined as: data transmitted in this state will all be received 

correctly. Similarly, the channel bad state is defined as: data transmitted in this state will be 

erased or discarded. Let p and q denote the transition probabilities from state G to state B and 

from state B to state G, respectively. The transition probability matrix is given by 















qq

pp
T

1

1
.  

 

Fig. 2.1 DTMC model of the FSO channel 

Suppose ][ k
B

k
G

kP    is the probability matrix of kth transmission state, where k
G  and 

k
B  denote the probability of being in the good state and bad state, respectively, then we have 

TPP kk 1
. The final steady state ][

qp

p

qp

q
P BG





     can be derived 

through solving TPP    and 1 

BG  , where 

B  also indicates the overall packet 

loss ratio (PLR) of the basic channel, i.e. before adaptation methods are implemented. A 

correlation coefficient ρ, defined as qp  1 , describes the probability of remaining 

in the current state [8]. When interleaving is added with an interleaving depth of d, the 
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distance between two formerly adjacent packets in an FEC frame will be d, so the new 

parameters in the DTMC model become 

 
qp

p
p

d






)1( 
 and  

qp

q
q

d






)1( 
, (1) 

and the new correlation coefficient will be qp  1  [9]. From the formulae above, 

we know that when qp   is close to 1, the channel correlation is very small and hence the 

channel is almost memoryless, so adding interleaving will not give a large improvement. But 

when qp   is small, the channel is more likely to remain in the current state, which means 

the length of burst errors would be larger, so adding an interleaving strategy with a large d 

will decrease  , and therefore decrease the average length of burst error, so that FEC 

decoding would be much easier. 

2.2 Continuous-Time-Markov-Chain Model 

To design the adaptation system, the number of erasures that an FEC codeword can recover 

should be determined by the probability of recovering every burst error longer than a certain 

length, which in turn is determined by the system requirements. This value varies as a result 

of different distributions of burst error lengths even if the average error ratio is fixed, but the 

DTMC model gives only a fixed distribution. Measurements have been made of the temporal 

distribution of the fade time [7][15], and experimental data in [13] gives the distributions of 

channel good time. These results allow us to make a CTMC model of the channel so that we 

can derive the statistical features of the burst error lengths with a given packet transmission 

time. Then we can make a CTMC model of an FSO channel as shown in Fig. 2.2. However, 

in practice the ON/OFF statistics should be systematically measured before a strategy of FEC 

coding and interleaving is adopted. 
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Fig. 2.2 CTMC model of FSO channel 

The correlation coefficient is important to the adaptation strategy, so we now calculate ρ 

according to the CTMC model. Let Pt  be the packet transmission time, ON  be the mean ON 

state holding time (ON time), and OFF  be the mean OFF state holding time (OFF time). In 

ON states, the average number of packets transmitted is 
P

ON

t


. One of these packets is 

followed by an erasure and the other 1
P

ON

t


 packets are followed by correctly received 

packets. Therefore, knowing the parameter p in the DTMC model denotes the probability of 

transition from state G to B, we now have 
ON

Ptp


  and similarly 
OFF

Ptq


  . Thus, we 

have  

 
OFF

P

ON

P tt


  1  (2) 

Furthermore, we can conclude that the system is highly correlated when the mean ON or OFF 

time is much greater than the packet transmission time. 

3. Analysis of Packet Layer FEC Codes and Interleaving without Fixed 

Buffer Size 
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When an adaptation strategy is evaluated, the performance of the system and the overhead are 

often considered. In this section, we first introduce the restrictions of FEC codeword length n 

and interleaving depth d and then propose the model of system performance as a function of 

FEC tolerable error ratio and the buffering size, and finally estimate the overhead. Based on 

these analyses, the system designer can compare the improvement of performance and the 

extra overhead to decide which pair of parameters are selected, according to the specific 

scenario. 

3.1 Restrictions of Interleaving Depth 

Extending the codeword length of FEC and increasing the depth of interleaving are 

commonly known as effective ways to address burst errors. It is known experimentally that 

the performance of the transmission system is related to the buffering size dnS   [8]. 

When S is fixed, the final PLR of the system is essentially fixed. Based on this assumption, 

the parameters n and d are optimized to reduce the overhead under the condition that the 

system performance is similar [9]. 

In highly correlated channels, although the FEC tolerant error ratio is higher than the average 

channel error ratio, packet FEC still fails because erasures often appear in bursts. And highly 

correlated error bursts require an extremely large FEC codeword length which will cause an 

unacceptably large coding and decoding overhead. Consequently, the most efficient solution 

is interleaving because it scatters the burst errors into every codeword so that the number of 

erasures in each codeword is averaged and thus tolerable. Also, because the complexity of 

FEC coding and decoding increases with the codeword length n, increasing the interleaving 

depth d is preferable. From (1) we know that    approaches 0 as d increases. To describe this, 

we used experimental data from [7] and [13] to plot    as a function of interleaving depth, as 

shown in Fig. 3.1. Experimental work [7] measures the holding time when the receiving 
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power is above and below the power threshold that the receiver can receive the data correctly, 

and gives the statistics of the OFF time. The power threshold is chosen based on the design 

decision [7] that the OFF probability is 0.3. The statistics of the ON time was measured in a 

different experiment [13], but this is not consistent with the average OFF probability in [7]. 

To ensure the consistency, we use the shape of the ON time distribution and adjust the mean 

and standard deviation proportionally to make the overall OFF probability 0.3. Assuming the 

information rate is 10Gbps and the code rate is 0.65, the total transmission rate is 15.385Gbps. 

Using 1046B as the packet size [7], we can derive the packet transmission time is 0.544μs, 

and 999935.0 . The channel is a typical highly correlated FSO transmission channel. 

 

Fig.3.1 Correlation coefficient as a function of the interleaving depth 

From Fig 3.1 we can see that the correlation coefficient asymptotically approaches zero for 

large d, thus increasing d becomes an increasingly inefficient way to reduce the channel 

correlation. To find a proper d, a threshold θ is defined in [9]: when  qp , the 

channel is considered to be nearly uncorrelated and using a larger d will have little impact on 

system performance. The parameter θ is determined by the application scenario, and when θ 

approaches 1, the system performance approaches that of a perfectly interleaved system. The 

corresponding minimum interleaving depth is   













)1log(

)1log(

qp
d


 , which is referred 
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to as the Near-Perfect (NP) interleaving depth ( NPd ). According to (2), the near-perfect 

interleaving depth, or the maximally efficient interleaving depth is derived as 

  























)1log(

)1log(

OFF

P

ON

P
NP tt
d




 . (3) 

3.2 Restriction of FEC Codeword Length  

However, even if the interleaving depth is smaller than NPd , the codeword length n can’t be 

too small because it leads to coding inefficiency [7]. For maximum distance separable (MDS) 

codes, the whole n-packet codeword that includes k information packets can be recovered if 

at least k packets are received. But for non-MDS codes, the receiver has to receive more than 

k packets to recover the erased packets. This effect is called coding inefficiency, and the ratio 

of the extra part needed is called the inefficiency factor Ψ. Ψ is typically negatively correlated 

with n when the type of FEC code is determined, denoted as  n . As a result, increasing n 

appropriately will reduce the overhead of redundancy, and therefore increase the effective 

throughput when the total throughput is fixed. Some common examples of LDPC codes are 

shown in Table 3.1. 

Table 3.1 Examples of LDPC inefficiency and other parameters 

Code 
Codeword 

Length 

Information 

bits 

Redundancy 

bits 
Code rate 

Overall 

efficiency 
Inefficiency 

Long 

LDPC 
16200 14400 1800 88.9% 88.6% 0.003 

Medium 

LDPC 
5940 5040 900 84.8% 84.2% 0.006 

Short 

LDPC 
1120 840 280 75% 71.4% 0.036 

3.3 System Performance Model 
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Following our discussion of the consequence of varying n and d and their restrictions, we 

now discuss how the system performance is related to S and FEC code rate. Note that   XP  

represents the probability of event X happens, the system performance PLR 1   can be 

derived according to the probability as: 

      
qp

q
rPrP ee


  11 , (4) 

where e  is the largest tolerable ratio of erasures in an FEC codeword, and 
qp

q


 implies 

the ratio of successfully received packet before adaptation methods. 

From [8] we know that the performance of different systems is very close if the buffering size 

is the same. Assume for now that the buffering size contains only one codeword, so that the 

system performance can be estimated by the probability of the error ratio in the buffering size 

being smaller than the tolerable error ratio e . Because the burst error length is proportional 

to the OFF time and the correct data length is proportional to the ON time, with the same 

factor Pt , we can use the ratio of OFF time over the total time to describe the error ratio. 

During the transitions between ON- and OFF- states in the CTMC channel model, 

determining the buffering size is like determining the sampling size to observe the OFF time 

ratio in the random process. Provided that the expected ratio of OFF time over the total time 

is 0r , for a certain sampling size, the observed r from experiments should be close to 0r , 

with a certain distribution called the sampling distribution, and its deviation should be smaller 

when the sampling size gets larger. An example is shown in Fig. 3.2, where the area of the 

shadow part of the figure denotes the probability that the erasures would not be recovered. If 

the sampling size is large enough, according to the central limit theorem, the distribution will 

be close to Gaussian. 
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Fig. 3.2 The PDF of the sampling distribution of the OFF ratio 

For the current problem, the sampling size equals the transmission time of S packets. If we 

have 3.00  er   , there’s 0.5 probability that the whole codeword can be recovered and 

another 0.5 probability that erasures are all discarded. As a result, the ratio of correct packets 

when S  would converge at 85.075.015.0   according to (4).  

For a general CTMC model of the channel, let  ONT tp
ON

 be the PDF of the ON time and 

 OFFT tp
OFF

 be the PDF of the OFF time. If we observe N pairs of ON and OFF transitions, the 

PDF of r is denoted by  Nrf ; , and its CDF is denoted by  NrF ; . Given e , we can 

derive the system performance by 

       
qp

qNFp

qp

q
NrFNrF e









;
;11;


 . (5) 

And using the definition of CDF, we can transform  NrF ;  into 

    NrPNF ee ;;   , or (6) 

  











 N
TT

T
PNF e

FN

F
e ;;  , (7) 
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where NT  and FT  denote the sum of the observed ON and OFF time within sampling size N, 

respectively. Because NT  and FT  are positive numbers, the formula (7) can be transformed 

into: 

     NTTPNF NeFee ;1;    (8) 

Then knowing NT  and FT  are mutually independent, we can derive: 

 
     

 






NeFe

FN

tt

FNFTNTe dtdtNtfNtfNF



1

;;; , 
(9) 

where  Ntf NTN
;  and  Ntf FTF

;  are the PDFs of Ft  and Ft , respectively. In order to 

calculate these distributions,  Ntf NTN
;  can be derived as the PDF of the sampling 

distribution of ONT , with a sampling size N, whereas  Ntf FTF
;  is matched similarly with OFFT . 

Particularly, if N is greater than 30, according to the central limit theorem,  Ntf NTN
;  (or 

 Ntf FTF
; ) is close to Gaussian, with a mean value of ONN  (or OFFN ) and a deviation of 

ONN   (or OFFN  ), where ON  (or OFF ) denotes the deviation of ONT  (or OFFT ). And when 

N is large enough, we can estimate the sampling size by 
P

OFFON

tS
N







. Thus the system 

performance becomes:  

  

qp

qdtdt
tS

tf
tS

tfp FN

tt P

OFFON
FT

P

OFFON
NT

NeFe

FN

































 




1

;;

. 
(10) 

Thus, given the required system performance 0  according to the particular deployment 

scenario, we can verify if e  and S can satisfy the requirement. 

3.4 Bandwidth Efficiency and Overhead 



14 

 

Let B be the total bandwidth of the channel, so that the effective throughput can be calculated 

by   01  RB . The minimum FEC redundancy ratio should be  nR e   . In 

order to ensure the effective throughput under the limitation of a certain bandwidth, we 

define the bandwidth efficiency by 

    01   ne .  (11) 

Another factor the designer must consider is overhead. The overhead C can include buffering 

time  dnC buffer  , FEC coding and decoding time  nC FEC , and the associated costs 

 nC enseexp  including coding and decoding power and the codec’s  price. Designers can weigh 

them according to the specific scenario with factors α, β and γ: 

 enseFECbuffer CCCC exp  , (12) 

or add some other overhead they are concerned about. 

We can now adjust n and d and then compare the corresponding η and C to decide which pair 

of coding/interleaving parameters should be adopted. If the system tolerable PLR and the 

FEC recovery threshold are given, we can derive the needed buffering size, and then adopt IF 

[9] or other algorithms to optimize the FEC codeword length and interleaving depth. Besides, 

we can also fix the interleaving depth to a near-perfect value and list several FEC recovery 

thresholds, so that we can derive both system performance and overhead as functions of the 

FEC codeword length, after which the optimization can be done. 

For example, we can first fix d to  9.0NPd , so that η and C can be calculated as a function of 

n, and then we select the n that results in the optimum η and C. Specifically, suppose the 

system tolerable PLR is 0.03 and  n  is fixed, we plotted three performance curves as a 

function of buffering size with 325.0,328.0,33.0e  in Fig. 3.3. The needed buffering 
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sizes are marked in the figure. If it is not essential to reduce the bandwidth efficiency to such 

a small value in the current scenario, we will certainly choose the parameters with 

33.0e  because it saves 1/3 of the buffering size in comparison to 325.0e . If 

 9.0NPd  is so large that  n  is too large, we can use  8.0NPd  or less and compare the 

corresponding η and C to make a decision. 

 

Fig. 3.3 Given the system performance requirement, different S is needed according to different e  

4. System Simulation 

4.1 Parameter Selection 

Just as section 3.1 introduced, in our experiments, the probability of ON-state is fixed by 

7.0
 qp

q
 according to [7]. For the OFF time PDF, we use statistical features of the 

channel data taken directly from [7]. For the ON time PDF, we use data from [13] with its 

distribution shape, and adjust the mean and standard deviation parameters slightly and 
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proportionally in order to achieve the condition 7.0
 qp

q
. The packet transmission time 

is set to 0.544μs, and the correlation factor before adaptation is 999935.0 . 

4.2 Implement 

Our model is implemented in MATLAB and the theoretical methods are verified using 

Monte-Carlo simulations. The process of the simulation is designed and implemented as 

follows. 

Firstly, the channel condition is simulated according to the CTMC model, by a 0-1 sequence 

that is able to be operated for packet erasures. To achieve this, a sequence of ON and OFF 

times in the CTMC model [ ONt1
OFFt1

ONt2
OFFt2

ONt3
OFFt3 …] is generated according to the 

parameters as discussed in section 4.1.  This sequence of transition times then allows us to 

determine if a particular packet is fully received, erased or occurs over a transition boundary. 

In the latter case where only part of a packet is erased, we assume that inside the packet, an 

inner FEC can recover errors if more than 70% of the packet is received. The channel 

sequence is thus derived. The whole process is shown in Fig. 4.1 and the results confirmed 

that the overall ON time ratio is around 0.7. 
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Fig. 4.1 Implement outline of channel sequence in CTMC model 

On the basis of the derived channel sequence, the next process in the simulation is coding, 

transmission and decoding. Before the source data is sent, packet level FEC is applied and 

interleaving is performed. Then the coded data sequence is modified according to the current 

channel condition to simulate the successful transmission, or packet erasure. Finally, the 

received packets are de-interleaved and decoded, so that the system PLR can be calculated. 

This process is illustrated as Fig. 4.2. 

 

Fig.4.2 Simulation outline of data transmission and FEC coding and decoding 

5. Results and Analysis 

5.1 FEC Codeword Length and Interleaving Depth 

In our numerical simulations, we first simulate the urban environment discussed in [8]. The 

parameters used are 6.0
 qp

q
, 99975.0 , and 5.0 eR  . Second we use the 

parameters introduced in section 4.1 and 65.0 eR  .The results of these two 
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simulations are shown in Fig. 5.1. The result corresponding to the higher value of ρ is shifted 

to higher values of interleaving depth as expected from our previous discussions. 

 

Fig. 5.1 Interleaving causes different performance when  is different  

We now consider the effect of changing the FEC codeword length n using values of 128, 

10000, 20000, 50000 and gradually increase the interleaving depth d, the system performance 

obtained is shown in Fig. 5.2. We can conclude from the figure that the system performance 

is uniquely characterised by the buffering size dnS  , as predicted in [8]. 

 

Fig. 5.2 System performance depends on buffering size. 

To evaluate the system performance at infinite buffering size in the simulation, we use curve 

fitting tools to derive the value numerically. We fit the system performance with the three 
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parameter function   cxaxf b  . An example of quality of the fitting is shown in Fig. 

5.3, the excellent agreement gives us confidence in the derived asymptotic values. 

 

Fig. 5.3 Curve fitting is used to indicate the performance at infinite buffering size in simulation 

This procedure is then applied in several groups of experiments in which 
qp

p
R e


   

and the results are shown in Table 5.1. In the function   cxaxf b   where b is 

negative, when x ,  xf  will converge to c. From Table 5.1, we can see that when 

7.0
 qp

q
, c varies slightly around the theoretical value 0.85, and when 8.0

 qp

q
, 

the theoretical value according to equation (4) is 9.08.05.015.0  , and c is close 

to 0.9, as expected. 

Table 5.1 Results of curve fitting 

qp

q


  

Codeword 

Length (n) 
a b c 

0.7 50000 -0.07236 -0.5339 0.8545 

0.7 20000 -0.1236 -0.6135 0.8514 

0.7 10000 -0.1586 -0.473 0.8568 

0.8 50000 -0.06187 -0.7018 0.8973 
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0.8 20000 -0.09936 -0.513 0.9049 

5.2 Comparison between Theoretical and Simulated Performance 

To verify the strategy, we compare the calculated system performance with the simulated one. 

The system performance can be calculated based on our theoretical considerations according 

to (5). In the function  NF e; , we assume N is large enough and use a Gaussian distribution 

to predict  Ntf FTF
; . Also because N is large enough, we have the following approximate 

relation between S with N,   POFFON tNS   , and then plot the calculated system 

performance in the same figure with the simulated one, as shown in Fig. 5.4. The agreement 

between the theoretical value and the simulation is worse at small S because the relation 

  POFFON tNS    is invalid here and our OFF time distribution is not Gaussian. 

Specifically, the corresponding S should be greater than about 2,200,000 packets, if N is 

greater than 30, to satisfy the basis of using the central limit theorem, and as can see from Fig. 

5.4, that the agreement is much better in this region of large buffer size. 

 

Fig. 5.4 Comparison of calculated and simulated value of system performance 

When we change e  to 0.33 and 0.314, a group of similar results are derived, as shown in Fig. 

5.5, from which we can see our mathematical prediction shows agreement with the simulated 

values. However, they are also restricted by the requirement of a large N, or a large S, which 
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is not a problem since the needed buffering size is around 3GB, which is not difficult to 

achieve now and such large block FEC is necessary and already widely used in highly 

correlated FSO transmission system. 

 

Fig. 5.5 Different groups of comparison when parameters are changed 

6. Conclusion 

In this paper, we have proposed a theoretical model of system performance as a function of 

FEC buffering size and recovery threshold, based on a CTMC model of an FSO channel. It 

allows the designer to estimate the needed buffering size in a specific scenario or to 

determine the optimum parameters without fixing the buffering size first. We have designed a 

Monte-Carlo simulation of FSO packet transmission including adaptation of the channel. The 

model is in very good agreement with the results of the numerical simulations. In the scenario 

where the raw channel good probability is 0.7, the overall system performance we have 

achieved is 0.97 using a buffer of 
6101.3   packets and FEC recovery ratio of 0.33. This 

method is applicable in situations such as long-range or mobile transmissions where the 

packet error rate before adaptation is significant. The CTMC model can be applied to any 

FSO channel provided the ON and OFF state statistical distribution functions are known. Our 
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analysis of the interleaved FEC can also be applied in other (non-FSO) channels if a CTMC 

model of the channel can be derived. 
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