23 research outputs found

    Gata2 in embryonic hematpoiesis

    Get PDF

    Gata2 in embryonic hematpoiesis

    Get PDF

    Gata2 in Embryonic Hematopoiesis

    Get PDF
    Hematopoiesis is a word originating from the two greek words αἷμα (haima) which means blood and the verb ποιεῖν (poien) which means to make/create. Hematopoiesis describes the process by which the organism creates and replenishes all the blood cell types that are required for the physiologic functions of the organism. The importance of the blood tissue can be highlighted by the many and discrete functions that it performs. These are accomplished through several different cell types forming the blood tissue (erythrocytes, platelets, macrophages, neutrophils, eosinophils, basophils, B-cells, T-cells, NK-cells). For example, the red blood cells or erythrocytes found in the circulating blood are mainly involved in the transport of O2 and CO2. Lymphocytes which are white blood cells are part of the immune system and actively participate in the defense of the organism against pathogens. In the adult organism hematopoietic cells are found not only in the blood but also in hematopoietic tissues such as the bone marrow, spleen, lymph nodes and thymus. Importantly, all mature hematopoietic cell types found in the blood tissues originate from rare hematopoietic stem cells (HSCs). These founder cells are quiescent, long-lived and are at the base of a well-studied cell differentiation hierarchy. HSCs robustly produce all the billions of mature blood cells that are required daily and throughout the entire life of the organism. HSCs are clinically relevant cells that have been used for over 50 years in transplantation and cell replacement therapies for leukemia and monogenic blood-related diseases

    FINDbase: a relational database recording frequencies of genetic defects leading to inherited disorders worldwide

    Get PDF
    Frequency of INherited Disorders database (FINDbase) () is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a ‘database-journal’

    In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate

    Get PDF
    Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/- aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor-related hematologic dysfunctions

    HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Get PDF
    Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC) function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α), a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver), and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO) approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs) are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages

    Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors

    Get PDF
    The Gata2 transcription factor is a pivotal regulator of hematopoietic cell development and maintenance, highlighted by the fact that Gata2 haploinsufficiency has been identified as the cause of some familial cases of acute myelogenous leukemia/myelodysplastic syndrome and in MonoMac syndrome. Genetic deletion in mice has shown that Gata2 is pivotal to the embryonic generation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). It functions in the embryo during endothelial cell to hematopoietic cell transition to affect hematopoietic cluster, HPC, and HSC formation. Gata2 conditional deletion and overexpression studies show the importance of Gata2 levels in hematopoiesis, during all developmental stages. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, therehasbeen nodirect study of Gata2 expressing cells during normal hematopoiesis. In this study, we generate a Gata2Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. We show that all the HSCs are Gata2 expressing. However, not allHPCs in the aorta, vitellineand umbilical arteries, and fetal liver require or express Gata2. These Gata2-independent HPCs exhibit a different functional output and genetic program, including Ras and cyclic AMP response element-binding protein pathways and other Gata factors, compared with Gata2-dependent HPCs. Our results, indicating that Gata2 is of major importance in programming toward HSC fate but not in all cells with HPC fate, have implications for current reprogramming strategies
    corecore