155 research outputs found

    Phylogenetic and Biogeographic Controls of Plant Nighttime Stomatal Conductance

    Get PDF
    The widely documented phenomenon of nighttime stomatal conductance (gsn) could lead to substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal conductance confers a functional advantage. Given that studies of gsn have focused on controlled environments or small numbers of species in natural environments, a broad phylogenetic and biogeographic context could provide insights into potential adaptive benefits of gsn. We measured gsn on a diverse suite of species (n = 73) across various functional groups and climates‐of‐origin in a common garden to study the phylogenetic and biogeographic/climatic controls on gsn and further assessed the degree to which gsn co‐varied with leaf functional traits and daytime gas exchange rates. Closely related species were more similar in gsn than expected by chance. Herbaceous species had higher gsn than woody species. Species that typically grow in climates with lower mean annual precipitation – where the fitness cost of water loss should be the highest – generally had higher gsn. Our results reveal the highest gsn rates in species from environments where neighboring plants compete most strongly for water, suggesting a possible role for the competitive advantage of gsn

    Nitrogen addition delays the emergence of an aridity-induced threshold for plant biomass

    Get PDF
    Crossing certain aridity thresholds in global drylands can lead to abrupt decays of ecosystem attributes such as plant productivity, potentially causing land degradation and desertification. It is largely unknown, however, whether these thresholds can be altered by other key global change drivers known to affect the water-use efficiency and productivity of vegetation, such as elevated CO2 and nitrogen (N). Using >5000 empirical measurements of plant biomass, we showed that crossing an aridity (1–precipitation/potential evapotranspiration) threshold of ∼0.50, which marks the transition from dry sub-humid to semi-arid climates, led to abrupt declines in aboveground biomass (AGB) and progressive increases in root:shoot ratios, thus importantly affecting carbon stocks and their distribution. N addition significantly increased AGB and delayed the emergence of its aridity threshold from 0.49 to 0.55 (P < 0.05). By coupling remote sensing estimates of leaf area index with simulations from multiple models, we found that CO2 enrichment did not alter the observed aridity threshold. By 2100, and under the RCP 8.5 scenario, we forecast a 0.3% net increase in the global land area exceeding the aridity threshold detected under a scenario that includes N deposition, in comparison to a 2.9% net increase if the N effect is not considered. Our study thus indicates that N addition could mitigate to a great extent the negative impact of increasing aridity on plant biomass in drylands. These findings are critical for improving forecasts of abrupt vegetation changes in response to ongoing global environmental change.This research was supported by the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0305), the Fundamental Research Funds for the Central Universities (lzujbky-2022-ct01), "111" Project (BP0719040) and "Innovation Star" project of Gansu Province's outstanding graduate students in 2023 (2023CXZX-132). FTM is supported by Generalitat Valenciana (CIDEGENT/2018/041) and the Spanish Ministry of Science and Innovation (EUR2022-134048). ZZ is supported by the National Natural Science Foundation of China (41901122) and the Shenzhen Fundamental Research Program (GXWD20201231165807007- 20200814213435001). JP is supported by the Spanish Government grant TED2021-132627B-I00 funded by MCIN, AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR, the Fundación Ramón Areces grant CIVP20A6621, and the Catalan Government grant SGR2021-1333

    A Lightweight Fault-Detection Scheme for Resource-Constrained Solar Insecticidal Lamp IoTs

    Get PDF
    The Solar Insecticidal Lamp Internet of Things (SIL-IoTs) is an emerging paradigm that extends Internet of Things (IoT) technology to agricultural-enabled electronic devices. Ensuring the dependability and safety of SIL-IoTs is crucial for pest monitoring, prediction, and prevention. However, SIL-IoTs can experience system performance degradation due to failures, which can be attributed to complex environmental changes and device deterioration in agricultural settings. This study proposes a sensor-level lightweight fault-detection scheme that takes into account realistic constraints such as computational resources and energy. By analyzing fault characteristics, we designed a distributed fault-detection method based on operation condition differences, interval number residuals, and feature residuals. Several experiments were conducted to validate the effectiveness of the proposed method. The results demonstrated that our method achieves an average F1-score of 95.59%. Furthermore, the proposed method only consumes an additional 0.27% of the total power, and utilizes 0.9% RAM and 3.1% Flash on the Arduino of the SIL-IoTs node. These findings indicated that the proposed method is lightweight and energy-efficient

    Precipitation gradient drives divergent relationship between non-structural carbohydrates and water availability in Pinus tabulaeformis of Northern China

    Get PDF
    Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate

    On Enabling Mobile Crowd Sensing for Data Collection in Smart Agriculture

    Get PDF
    Smart agriculture enables the efficiency and intelligence of production in physical farm management. Though promising, due to the limitation of the existing data collection methods, it still encounters few challenges that are required to be considered. Mobile Crowd Sensing (MCS) embeds three beneficial characteristics: a) cost-effectiveness, b) scalability, and c) mobility and robustness. With the Internet of Things (IoT) becoming a reality, the smart phones are widely becoming available even in remote areas. Hence, both the MCSs characteristics and the plug and play widely available infrastructure provides huge opportunities for the MCS-enabled smart agriculture.opening up several new opportunities at the application level. In this paper, we extensively evaluate the Agriculture Mobile Crowd Sensing (AMCS) and provide insights for agricultural data collection schemes. In addition, we provide a comparative study with the existing agriculture data collection solutions and conclude that AMCS has significant benefits in terms of flexibility, collecting implicit data, and low cost requirements. However, we note that AMCSs may still posses limitations in regard to data integrity and quality to be considered as a future work. To this end, we perform a detailed analysis of the challenges and opportunities that concerns the MCS-enabled agriculture by putting forward six potential applications of AMCS-enabled agriculture. Finally, we propose future research and focus on agricultural characteristics, e.g., seasonality and regionality

    Variation in Contents of Iodine Species in Kelp during Blanching-Salting Process

    Get PDF
    In this study, the contents of four iodine forms, including iodide ion (I−), iodate (IO3−), mono-iodotyrosine (MIT) and diiodotyrosine (DIT), were determined in the blanching water, rinsing water, saline water and processed kelp to study the dissolution patterns of iodine forms during the blanching, rinsing and salting of kelp. The I− contents in fresh, blanched, primarily rinsed and secondarily rinsed kelp were 1 689.41–8 753.24 mg/kg, and the contents of IO3− ranged from 42.67 to 442.00 mg/kg. The contents of MIT and DIT ranged from 698.22 to 861.90 mg/kg and 123.97 to 158.67 mg/kg, respectively. During the blanching process, the dissolution rates of I−, MIT and DIT were the highest, which were (64.38 ± 2.99)%, (19.35 ± 0.97)% and (6.55 ± 0.53)%, respectively. With increasing kelp addition, the contents of I−, MIT and DIT in the blanching, rinsing and saline water first increased and then leveled off, and the content of IO3− in all waters showed a monotonously increasing trend. With increasing number of kelp rinsed, the dissolution rate of I− decreased first and then basically remained unchanged. Compared with fresh kelp, the dissolution rate of I− in the first rinsed kelp decreased by (80.72 ± 2.66)%, and iodine was released into water mainly in the form of I−, with the maximum release being recorded during the blanching process

    Stomatal responses of terrestrial plants to global change

    Get PDF
    Quantifying the stomatal responses of plants to global change factors is crucial for modeling terrestrial carbon and water cycles. Here we synthesize worldwide experimental data to show that stomatal conductance (gs) decreases with elevated carbon dioxide (CO2), warming, decreased precipitation, and tropospheric ozone pollution, but increases with increased precipitation and nitrogen (N) deposition. These responses vary with treatment magnitude, plant attributes (ambient gs, vegetation biomes, and plant functional types), and climate. All two-factor combinations (except warming + N deposition) significantly reduce gs, and their individual effects are commonly additive but tend to be antagonistic as the effect sizes increased. We further show that rising CO2 and warming would dominate the future change of plant gs across biomes. The results of our meta-analysis provide a foundation for understanding and predicting plant gs across biomes and guiding manipulative experiment designs in a real world where global change factors do not occur in isolation

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology
    corecore