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ABSTRACT 

Crossing certain aridity thresholds in global drylands can lead to abrupt decays of ecosystem attributes such 
as plant productivity, potentially causing land degradation and desertification. It is largely unknown, 
however, whether these thresholds can be altered by other key global change drivers known to affect the 
water-use efficiency and productivity of vegetation, such as elevated CO 2 and nitrogen (N). Using > 50 0 0 
empirical measurements of plant biomass, we showed that crossing an aridity (1–precipitation/potential 
evapotranspiration) threshold of ∼0.50, which marks the transition from dry sub-humid to semi-arid 
climates, led to abrupt declines in aboveground biomass (AGB) and progressive increases in root:shoot 
ratios, thus importantly affecting carbon stocks and their distribution. N addition significantly increased 
AGB and delayed the emergence of its aridity threshold from 0.49 to 0.55 ( P < 0.05). By coupling remote 
sensing estimates of leaf area index with simulations from multiple models, we found that CO 2 enrichment 
did not alter the observed aridity threshold. By 2100, and under the RCP 8.5 scenario, we forecast a 0.3% net 
increase in the global land area exceeding the aridity threshold detected under a scenario that includes N 

deposition, in comparison to a 2.9% net increase if the N effect is not considered. Our study thus indicates 
that N addition could mitigate to a great extent the negative impact of increasing aridity on plant biomass in 
drylands. These findings are critical for improving forecasts of abrupt vegetation changes in response to 
ongoing global environmental change. 

Keywords: aboveground biomass, root:shoot ratios, elevated CO 2 , nitrogen fertilization, ecosystem 
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abrupt decays in plant productivity and cover at arid- 
ity thresholds of 0.54 and 0.79, respectively. While 
this finding highlights the abrupt response of key 
vegetation attributes to the aridity gradient observed 
across global drylands, three key knowledge gaps 
remain to be addressed. First, it is unknown whether 
similar thresholds exist for field measured plant 
biomass, which is a key carbon sink and plays an 
essential role in protecting soil against erosion [ 11 –
16 ]. Second, it is also unknown how belowground 
biomass and the root:shoot ratio (the biomass ratio 
between roots and shoots) respond to increases in 
aridity across global drylands. Last, it is also unclear 
whether these aridity thresholds can be altered by 
the ongoing atmospheric enrichment of CO 2 and 
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NTRODUCTION 

ridity is a key climatic feature that measures the
alance between the amount of water received via
recipitation and that taken up by the atmosphere
potential evapotranspiration) [ 1 –3 ]. Recent stud-
es have shown that the crossing of certain aridity
hresholds can lead to abrupt decays in ecosystem
ttributes such as plant productivity and increased
lant mortality, thus constraining carbon stocks
cross global drylands [ 4 –8 ]. Moreover, irreversible
hanges might occur once these thresholds are
rossed, potentially causing widespread ecosystem
egradation [ 4 , 9 , 10 ]. 
Using remotely sensed vegetation data from
lobal drylands, Berdugo et al. (2020) [ 4 ] found 
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itrogen, two key drivers of global environmental
hange that largely affect plant photosynthesis and
ater use efficiency, and thus biomass and produc-
ivity [ 17 –20 ]. Because of these knowledge gaps,
ur projections of how plant biomass may respond
o climate change remain highly uncertain [ 21 , 22 ]. 
Elevated CO 2 can reduce plant stomatal conduc-

ance and transpiration rates, and thus increase water
se efficiency [ 17 , 23 –25 ]. This water-saving process
onserves soil water for greater carbon uptake and
nhances plant responses to water stress [ 3 , 26 ]. In-
eed, elevated CO 2 has been identified as the major
river of the vegetation greening observed in many
rylands worldwide in recent decades [ 3 , 27 ]. Ni-
rogen (N) is also a major limiting factor for plant
rowth in drylands [ 28 ]. Plant N supply and pho-
osynthesis are closely linked, as demonstrated by
he universal increase in photosynthesis with in-
reasing leaf N content [ 29 –31 ]. Therefore, anthro-
ogenic increase in N via fossil-fuel combustion and
ertilizer application frequently improves plant wa-
er use efficiency by stimulating photosynthesis [ 32 –
5 ]. The higher water use efficiency under higher N
ould conserve soil water and alleviate water stress
 3 , 26 ]. However, both N and CO 2 enrichments
ave been found to increase aboveground biomass,
hich may intensify soil water consumption and the
egative effects of drought stress on plant biomass
 3 , 36 –38 ]. Therefore, it is unclear whether or not—
nd how—these two factors alter observed aridity-
nduced thresholds in drylands. 
Here we combined > 50 0 0 empirical measure-
ents of plant biomass from the literature and a
ulti-model simulation of the leaf area index (LAI,

 proxy of foliage biomass with a high degree of
ertainty in model predictions) [ 27 , 39 ], to test the
ypothesis that CO 2 and N enrichments may alle-
iate plant water stress, and thus mitigate or delay
he abrupt decay of plant biomass driven by arid-
ty. To test this hypothesis, we investigated chang-
ng patterns of plant biomass along aridity gradi-
nts across areas with water deficit worldwide and
valuated the impacts of CO 2 and N enrichments
n the presence of aridity-induced thresholds. We
ompiled above- and belowground biomass (AGB
nd BGB, respectively), root:shoot ratio and AGB
ata measured under CO 2 and N enrichments.
ue to the limited availability of AGB measure-
ents under CO 2 enrichment in drylands [ 18 ],
e also evaluated the impact of CO 2 enrichment
n the aridity threshold by coupling remote sens-
ng LAI and model-simulated CO 2 effects on LAI
an ensemble of 12 process-based dynamic vegeta-
ion models and a machine learning random forest
odel). 
Page 2 of 12 
RESULTS 

Nonlinear responses of plant biomass to 

aridity 
Field measurements of plant above- and below- 
ground biomass and the root:shoot ratio showed 
nonlinear responses to aridity, with thresholds 
occurring at an aridity value of ∼0.50 (Fig. 1 ; S3 ).
This aridity value marks the transition from dry sub- 
humid to semi-arid climates. At low levels of aridity, 
AGB slightly decreased with increasing aridity. 
Once a 0.49 aridity threshold was crossed, however, 
AGB decayed abruptly (Fig. 1 a–c). Below ground 
biomass exhibited a nonlinear response to aridity, 
with thresholds occurring at an aridity value of 
0.52 ( Figure S2a –c ). Plants tend to allocate more
biomass to roots than to shoots as aridity increases 
(Fig. 1 d). This allocation was more obvious beyond 
the aridity threshold identified, as the root:shoot 
ratio step increased after aridity exceeding a 0.51 
threshold (Fig. 1 d–f). When we accounted for the 
influence of vegetation type and soil total nitrogen, 
the observed aridity threshold remained consistent 
( Figure S3a –i ). 

Impacts of nitrogen and CO 2 enrichment 
on plant aboveground biomass and the 

aridity threshold 

Based on a subset of field experiments ( n = 167)
including AGB measurements under ambient and 
N addition treatments, we found that N addition 
significantly delayed the emergence of the aridity- 
induced threshold by 0.06 aridity units (i.e. from 

0.49 to 0.55; P < 0.05; Fig. 2 a–b). When we
accounted for the N addition amount and the 
types of N compounds (urea, NH 4 NO 3 , NH 4 Cl, 
etc), the aridity threshold under N addition main- 
tained at 0.55 ( Figure S4 ). When we standard- 
ized the biomass measurements by the amount 
of N added, we observed that AGB increased by 
∼5.4% g −1 N added (Fig. 3 a). Using remote-sensing 
LAI estimates and model-simulated values from 

both random forest and TRENDY models, we found 
that CO 2 enrichment did not alter the observed arid- 
ity threshold (Fig. 2 c–d; S5). The observed arid- 
ity thresholds of AGB remained consistent when we 
considered the influence of vegetation type and soil 
total nitrogen ( Figure S6a –b ). 

Future changes in the land area crossing 

the aridity threshold 

To i l lustrate the effect of N on the aridity thresh-
olds identified for AGB, we estimated future changes 
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Figure 1. Nonlinear responses of plant biomass to aridity. Aridity thresholds for measured (a) aboveground biomass 
( n = 1353) and (d) root-shoot ratio ( n = 3093). Solid red lines represent the linear fits on both sides of each threshold. The 
red numbers and vertical dashed lines represent the identified aridity thresholds. Plant biomass data were log-transformed 
to conform to normality. The violin diagrams in panels b and e show bootstrapped slopes of the predicted fitted trend at the 
threshold of the two regressions existing at each side of the threshold (purple before the threshold, red after the threshold). 
The violin diagrams in panels c and f show bootstrapped intercepts. The asterisks represent a significant difference before 
and after the aridity threshold at P < 0.001 using the Mann–Whitney U test. 
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n the global land area that wi l l exceed the arid-
ty threshold using the aridity projections under the
CP 8.5 (Fig. 4 ) and 4.5 ( Figure S7 ) scenarios, re-
pectively. By 2100, and under RCP 8.5 scenario,
3% of land area is projected to experience a change
n aridity < 0.06 (Fig. 4 A). Should the pattern in time
eproduce the same way we have seen here across
pace, we infer that 2.0% of the land area wi l l cross
he observed aridity threshold of AGB when the ef-
ect of N is included (vs. the 4.0% estimated without
onsidering the N effect; Fig. 4 C). These expanding
reas are found mostly in Europe, the United States,
nd Australia. By 2100, 1.7% of the global land sur-
ace area wi l l pul l back from the observed aridity
hreshold of AGB when accounting for N effect and
ridity reductions, as opposed to 1.1% when the ef-
ect of N is not considered. These shrinking areas are
ocated mainly in western India and north-western
hina (Fig. 4 ). Overall, we estimate a 0.3% net in-
rease in global land area crossing the aridity thresh-
ld if the effect of N and aridity are included, com-
ared to a 2.9% net increase in areas crossing this
hreshold if the N effect is not accounted for (i.e. only
ridity effects are considered; Figure S7 ). Under the
Page 3 of 12 
RCP 4.5 scenario, we predict a 0.8% net decrease in
land area that wi l l cross the observed aridity thresh-
old when including both N deposition and aridity, 
compared to a 1.3% net increase if the effect of N is
not considered ( Figure S7 ). 

We also estimated the impact of increases in arid- 
ity and N deposition on future changes in AGB in ar-
eas with aridity values ≥0 (i.e. where annual precipi- 
tation is ≤ potential evapotranspiration) under both 
the RCP 8.5 (Fig. 5 a–c) and 4.5 ( Figure S8 ) scenar-
ios. By 2100, and under the RCP 8.5 scenario, aridifi-
cation wi l l lead to an overall 1.72 Pg decrease in AGB
(Fig. 5 d). However, when both changes in aridity and 
N deposition are considered, AGB wi l l decrease by
0.68 Pg. 

DISCUSSION 

We detected a sharp decline in measured AGB when 
crossing the transition point from dry sub-humid to 
semi-arid climates (aridity = 0.50). This result is 
broadly consistent with the aridity threshold of 0.52–
0.54 observed when using productivity proxies such 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
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Figure 2. Impacts of nitrogen and CO 2 enrichment on plant aboveground biomass and its aridity threshold. Measured plant 
aboveground biomass (a) and comparisons of aridity threshold values (b) under ambient and nitrogen (N) addition treatments 
( n = 167 sites). Remotely sensed and random forest model-simulated leaf area index (c), and comparisons of aridity threshold 
values (d) under high (401 ppm) and low (341 ppm) CO 2 levels. The two comparisons are based on paired datasets of high 
vs. low N/CO 2 levels. Data were log-transformed to conform to normality. Box plots in (b) and (d) show the median, upper 
and lower quartiles, with outlier values represented by black dots. Different letters indicate significant differences in aridity 
thresholds between high versus low N levels ( P < 0.001). 
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as the normalized difference vegetation index [ 4 ], 
aboveground biomass carbon and vegetation optical 
depth (a satellite dataset capturing the aboveground 
biomass signal) in global drylands ( Figure S9 ). The 
three possible mechanisms could explain the abrupt 
decay in AGB observed once this aridity thresh- 
old is crossed. First, compared to dry-subhumid 
systems, the vegetation of semiarid ecosystems is 
primarily influenced by aridity (i.e. water availabil- 
ity) ( Figure S10 ). For example, Liu et al. (2020) 
[ 40 ] found an increasing control of soil moisture 
on chlorophyll fluorescence beyond an aridity value 
of 0.50. Second, plants adapt their traits and physi- 
ologies to cope with a water-limited environment at 
the cost of a slower photosynthesis rate [ 41 ], and 
shorter growth periods [ 42 ]. Slower photoassimi- 
lates accumulation may be unable to compensate for 
the depletion of stored reserves (i.e. starch and su- 
crose) due to respiration costs, resulting in less pho- 
toassimilate translocation towards the aboveground 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
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iomass [ 43 , 44 ]. Finally, to maximize water and nu-
rient uptake, plants tend to allocate more photoas-
imilates to belowground roots as both soil water and
utrient availability decreases in a dry environment
Page 5 of 12 
[ 45 –50 ]. This is evident from our threshold analy-
sis using > 30 0 0 measurements of root:shoot ratios,
which increased in an abrupt way when transitioning 
from dry-subhumid to semi-arid climates (Fig. 1 d). 
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Nitrogen addition delayed the emergence of the
bserved aridity threshold (Fig. 3 ). There are three
ain explanations for the N effect on the aridity
hreshold. First, higher leaf N would translate into a
arger photosynthetic capacity according to the pho-
osynthesis of Fick’s law [ 31 ]. Leaf N and stomatal
onductance represent N and water inputs for pho-
osynthesis, respectively. N addition would increase
eaf N. At a given stomatal conductance, higher leaf
 translates into a larger drawdown of internal CO 2 
nd thus a higher photosynthetic rate. Therefore,
lant water use efficiency can be improved under
 addition, which contributes to the delay of the
mergence of the aridity threshold for plant photo-
ynthesis and biomass. Second, N addition delays
he reduction and closure of stomatal conductance
 51 , 52 ]. The mechanism of delaying the reduction
nd closure of stomatal conductance under N addi-
ion is particularly important in a warming climate, as
eeping stomata open can cool plant leaves and pro-
ect them from irreversible heat damage [ 53 ]. This is
ncreasingly crucial for water limited environments,
ince current temperatures appear to approach or ex-
eed the optimum for photosynthesis [ 3 , 54 ]. Third,
umerous studies have consistently demonstrated
he positive effect of N on plant biomass produc-
ion, encompassing both the aboveground and be-
owground components [ 55 –57 ]. This alteration in
oot allocation, facilitated by N addition, would de-
ay the onset of the aridity threshold by strengthen-
ng the water uptake of plants. Therefore, delaying
he reduction and closure of stomatal conductance
ay result in photosynthesis and biomass decays oc-
urring at higher aridity values under N addition. 
Leaf area index increased by 2.8% per 100 ppm el-

vation of CO 2 (Fig. 3 b), which was within the range
0.6%–24.1% increases in AGB per 100 ppm) found
n the Free-Air CO 2 Enrichment experiments [ 58 ].
ontrary to our expectation, CO 2 enrichment did
ot appear to alleviate the aridity-induced threshold
bserved. Process models, such as TRENDY, might
ot be able to simulate the change in aridity thresh-
ld due to a lack of underlying mechanisms needed
o drive the change. However, this should not have
aused the absence of a CO 2 effect on the aridity
hreshold we found because our machine learning
odel, which requires no underlying mechanisms,
id not show any CO 2 effect on the threshold ob-
erved. Therefore, our results indicate that CO 2 en-
ichment may not mitigate the ecosystem degrada-
ion that might occur in drylands once crossing the
ridity threshold. Whi le CO 2 ferti lization has been
hown to decrease stomatal conductance [ 17 , 23 , 25 ],
his process can lead to reduced transpiration rates.
he decreased plant transpiration would reduce
eaf cooling and increase both leaf temperature and
Page 6 of 12 
vapor pressure deficit. As a consequence, excessive 
stomatal closure may occur, potentially outweighing 
the benefits of CO 2 fertilization [ 59 –61 ]. This may
also explain the observed pattern that the CO 2 ef- 
fect tends to diminish under high aridity conditions 
(Fig. 2 c). 

The effect of N on the emergence of the aridity 
threshold was particularly noteworthy given our es- 
timates of 0.3% net increase in land area crossing the 
aridity threshold under a scenario including N depo- 
sition, compared to a 2.9% net increase if the N ef-
fect is not accounted for. Nitrogen addition increases 
AGB and, by doing so, increase forage stocks, C se- 
questration, and the protective effect of vegetation 
against soil erosion. These are key features to mit- 
igate climate change and desertification impacts in 
drylands and our results thus suggest that N fertil- 
ization may be an ally to evade the negative conse- 
quences of aridity thresholds for plant biomass and 
associated ecosystem services under climate change. 
However, N addition may lead to local declines in 
plant biodiversity [ 62 ]. Thus, understanding under 
which environmental conditions such biodiversity 
declines associated to N addition can occur is an im- 
portant question that must be explored by future re- 
search to guide management actions aiming to max- 
imize the positive effects of N while minimizing the 
negative ones. 

Our findings indicated that N addition may effec- 
tively mitigate the negative impact of the projected 
aridification on plant biomass in water-limited en- 
vironments. However, there is sti l l ongoing debate 
about whether greening and productivity would con- 
tinue to increase under global climate change in re- 
cent years [ 3 , 52 ]. Some evidence suggested that the
positive trends in greening and productivity might 
be offset by water stress due to global climate change 
[ 63 , 64 ]. However, some studies have also found that
in highly drought-prone forests, the tree’s vulner- 
ability to drought is mitigated by higher N [ 52 ].
Moreover, many dryland ecosystems have shown 
significant greening and enhanced vegetation pro- 
ductivity since the 1980s [ 3 ]. Aridification in dry- 
lands is a result of potential evapotranspiration in- 
crease that exceeds a concurrent increase in precip- 
itation [ 2 , 65 –67 ]. Therefore, higher water use effi-
ciency under higher N together with increasing pre- 
cipitation amount might support a persistent higher 
plant biomass. Our finding that N addition delays 
the aridity threshold advances our understanding of 
vegetation productivity and greenness under global 
environmental change. 

Several limitations in our study should be 
acknowledged. The space-for-time substitution 
approach used, while proven highly useful in ecolog- 
ical studies [ 68 ], is limited in assessing how and at
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hat speed the aridity threshold can occur through
ime [ 69 ]. Since measurements with sufficiently
ong timeframes are unavailable, the space-for-time
pproach may serve as the best substitute if we are
ocusing on prediction at a decadal time scale (e.g.
bout 80 years by 2100) [ 68 ]. Second, our work
s limited by the scarce field sites in drylands in
hich CO 2 -enrichment studies can be performed,
o more field studies wi l l have to be undertaken
o redress this gap in our knowledge. To overcome
his limitation, we coupled remote sensing LAI and
ulti-model attributed CO 2 effects on LAI, which
ay represent a good alternative if sufficient field
easurements are unavailable. The estimation of
AI is based on measuring leaf surface area, and
n regions with high vegetation density, leaf over-
ap can occur, which may potentially result in an
nderestimation of biomass. However, it is worth
oting that our study areas have an aridity index
AI = precipitation/potential evapotranspiration)
1, that is, annual precipitation is equal to or less
han potential evapotranspiration, resulting in rela-
ively low vegetation cover. In such regions, LAI can
ti l l serve as a reliable indicator of plant biomass.
hird, our findings help to understand how N and
O 2 enrichment influence the observed aridity
hresholds. However, it is important to note that our
esults do not provide the specific mechanisms that
rive these thresholds. Investigating the underlying
echanisms calls for a different framework and
hould be the focus of future research endeavors. 

ONCLUSION 

sing multiple field and remote sensing datasets,
e identified aridity-induced thresholds for plant
iomass and how they are affected by N and CO 2 
nrichments. We found that AGB decays sharply
nd root:shoot ratios abruptly increase once climate
hifts from dry sub-humid to semi-arid climates. This
nding suggests that careful management is required
n areas moving towards a semi-arid climate and,
or example, grazing intensities should be signifi-
antly reduced to prevent greater decay in plant AGB
nd cover. We also show that N addition, but not
O 2 enrichment, delayed the emergence of this arid-
ty threshold. The delayed emergence of the arid-
ty threshold, together with increases in AGB un-
er N addition (around 5% per gram of N), are
xpected to greatly mitigate the negative effect of
ridification on vegetation in water limited ecosys-
ems (precipitation ≤ potential evapotranspiration)
orldwide. These findings help disentangle the ef-
ects of changes in aridity, as well as of N and CO 2 
nrichment, on plant biomass, which are critical for
Page 7 of 12 
improving forecasts of vegetation responses to global 
environment changes. 

METHODS 

Collection of plant biomass 
measurements 
Our study focused on sites with an aridity index 
(AI = precipitation/potential evapotranspiration) 
≤1, i.e. sites where the annual precipitation is ≤ po- 
tential evapotranspiration. These areas include all 
drylands (AI < 0.65) and also some areas with con-
ditions close to drylands whose future conversion 
into drylands has been forecasted by several studies 
[ 2 , 70 ]. We preferred to focus on areas with an overall
water deficit rather than pure drylands to investigate 
whether or not the AI value that separates drylands 
and non-drylands (0.65) is also a threshold for plant 
biomass, which is of further relevance regarding fore- 
casted dryland expansion [ 2 ]. Given that greater AI
values mean fewer arid areas, and to facilitate the 
interpretation of our results, we used 1 − AI as a
surrogate of aridity [ 71 ]. 

We compiled plant biomass measurements from 

published studies, by conducting searches of Web 
of Science and Google Scholar using the keywords 
‘aboveground biomass’ and ‘belowground biomass’. 
We collated AGB and BGB measurements from 

187 published studies (from 1965 to 2018) that met 
the following criteria: (1) data were obtained from 

field measurements, (2) studies included coordinate 
information and (3) study sites had an aridity value 
≥0. Most data were collected directly from the main 
text or supplementary tables of selected papers, 
although some values were digitally extracted from 

figures using GetData Graph Digitizer, version 
2.22 ( http://getdata- graph- digitizer.com/ ). To 
minimize the impact of ecosystem restoration on 
plant biomass/LAI, we implemented a two-fold 
approach. First, to avoid the potential influence 
of human activity on plant biomass, we carefully 
selected our study sites by excluding cropland areas 
and sites with a Human Footprint Index (HFI) 
greater than 50% or a percent annual burn area 
averaging over 30%. Second, in the case of forest 
ecosystems, we specifically focused on mature 
or old-growth forests that had stands exceeding 
80 years to minimize the influence of afforesta- 
tion [ 72 ]. The Global Human Footprint Dataset 
(HFI) was obtained from the Wild 220 Project 
( http://sedac.ciesincolumbia.edu/data/set/ 
wildareas- v2- 222human- footprint- geographic ). 
The percent annual burn area was obtained 
from GFED4 biomass burning emissions dataset 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
http://getdata-graph-digitizer.com/
http://sedac.ciesincolumbia.edu/data/set/wildareas-v2-222human-footprint-geographic
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 https://daac.ornl.gov/VEGETATION/guides/ 
reemissions v4.html ). The forest age datasets were
btained from the ForestAgeBGI datstet ( https://
oi.org/10.17871/ForestA geBGI.20 21 ). For studies
ncluding data from multiple years, we averaged val-
es from different years at each site to eliminate the
ffects of interannual precipitation change and used
hese mean values in all of our analyses. Overall, we
ompiled 1353 AGB and 462 BGB measurements
nder ambient conditions, and 334 AGB measure-
ents from 167 sites where N addition experiments
ad been conducted ( Figure S1 ). The biomass data
ere mostly measured during the peak growing
eason. In some experiments, nitrogen was directly
dded in the form of granules [ 73 , 74 ], some others
ere added as an aqueous solution. In the cases of
queous solution, an equivalent amount of disti l led
ater is usually added to the control plots to account
or the effect of increased water [ 75 ]. The amount of
ater addition was equivalent to less than 3 mm of
xtra precipitation each year [ 76 , 77 ], which was not
xpected to influence plant biomass. We calculated
oot:shoot ratios using studies reporting both AGB
nd BGB (142 measurements). Finally, we also ob-
ained 2951 measurements of root:shoot ratios from
 recently published study at a global scale [ 78 ]. 

emote sensing leaf area index 

he LAI quantifies the amount of foliage in the plant
anopy, which is a major driving factor of net pri-
ary production, water and nutrient use, and car-
on balance [ 79 ]. We used NASA’s Global Inventory
odeling and Monitoring Study third-generation
ataset of remote sensing LAI (GIMMS LAI 3 g)
 80 ], which was available for the period 1982–2016.
e calculated the growing season-integrated LAI for
ach year and for each 0.5° × 0.5° grid cell of global
egetated areas following the method used by Zhu
t al. (2016) [ 27 ]; however, based on FAO vegetation
aps, we classified vegetation types and excluded ar-
as of agriculture, urban landscapes or water bod-
es [ 81 ] to avoid outliers from agricultural and ur-
an lands, since changes in the LAI in these areas are
ore likely to be driven by human activity (e.g. irri-
ation) than by changes in aridity. 

he CO 2 effect on the leaf area index 

stimated by a machine learning model 
sing a similar method to that of Yuan et al. (2019)
 82 ], we constructed random forest (RF) machine
earning models for simulating LAI driven by cli-
atic factors (air temperature, precipitation, radia-
ion, wind speed, and vapor pressure deficit), atmo-
pheric CO 2 concentrations, and other background
actors (tree age, vegetation type, soil total nitrogen
nd phosphorus). The background factors reflected
Page 8 of 12 
the difference in the initial conditions among grid 
cells, and were not assumed to change during the RF 
model simulations. We assumed that other poten- 
tially unexplained human and natural factors were in- 
cluded in the error term of the RF model. In each
vegetation grid cell, we selected 33 years of satellite- 
observed LAI from the total 34-year period (1982–
2015) as training data to develop the RF model, and 
used the remaining year of LAI as testing data for 
cross-validation. The RF was run 34 times to ensure 
that data from all years were selected for model val- 
idation. Using the constructed RF model, we pre- 
dicted the LAI under two factorial simulations: (1) 
driven by both climate variables and changing CO 2 
over time (1982–2015), and (2) with CO 2 kept con- 
stant at its 1982 value ( ∼341 ppm) but with climate
variables varying over time. The two factorial simu- 
lations differed only in CO 2 . The mean values of the
34 simulations were used in our analyses. We com- 
pared the aridity thresholds of LAI between the two 
factorial simulations, which had a 60 ppm difference 
in CO 2 ( ∼401 vs. 341 ppm). 

The historical climate fields were obtained from 

the Climate Research Unit (CRU) and Terra- 
Climate dataset ( https://w w w.climatology lab.org/ 
terraclimate.html ), and global atmospheric CO 2 
concentrations were obtained from Greenhouse 
gases Observing SATellite (GOSAT) data [ 82 ]. The 
soil total nitrogen at 0–30 cm were obtained from the 
Soil Grid dataset [ 83 ], and the total soil phosphorus
dataset (0–30 cm) were obtained from the dataset 
in He et al. (2021) [ 84 ]. We acquired data on tree
age from the forest age dataset [ 85 ]. Cross-validation
suggested that the RF model simulated LAI matched 
the satellite observed LAI very well ( Figure S11 ), 
with correlation coefficients (R 

2 ) over 0.70 across 
96% of vegetated areas worldwide. The root mean 
square errors obtained were less than 0.10 (1% of 
the growing season integrated LAI value) in 99.4% of 
vegetated areas worldwide. These results imply that 
the RF model used can accurately simulate LAI. 

Assessing the effect of CO 2 on the leaf 
area index by using dynamic global 
vegetation models 
We evaluated the effect of CO 2 on LAI by us- 
ing the ensemble of 12 Dynamic Global Vegeta- 
tion Models from the ‘trends and drivers of the re- 
gional scale sources and sinks of carbon dioxide’ 
(TRENDY; see details in Table S1 ) project [ 39 ].
This project performed a factorial set of model sim- 
ulations over the 1982–2016 period, forced with 
three factors: CO 2 , climate and land use. We used 
a multi-model ensemble mean growing-season in- 
tegrated LAI for the period 1982–2016 under two 

https://daac.ornl.gov/VEGETATION/guides/fireemissions v4.html
https://doi.org/10.17871/ForestAgeBGI.2021
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
https://www.climatologylab.org/terraclimate.html
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
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cenarios: S0 (low CO 2 ): LAI-simulated with no
orcing changes (time-invariant ‘pre-industrial’ CO 2 ,
limate and land use); and S1 (high CO 2 ): LAI-
imulated only with varying CO 2 (time-invariant
pre-industrial’ climate and land use). CO 2 concen-
rations were around 285 ppm in S0 and 370 ppm
n S1. These two scenarios differed only in CO 2 ,
hereby allowing us to evaluate the effects of CO 2 en-
ichment on L AI (L AI CO2 ). We then removed the
O 2 effect from the remote sensing L AI (L AI RS ), i.e.
 AI RS − L AI CO2 and compared the aridity thresh-
lds between the LAI RS and L AI RS −L AI CO2 , which
ave an 85 ppm difference in CO 2 (370 vs. 285 ppm).
Zhu et al. (2016) [ 27 ] showed that the TRENDY
odels, according to an optimal fingerprint detec-
ion method, give reliable simulations of the CO 2 ef-
ect on LAI. First, they regressed the remote sensing
lobal average LAI time series against the CO 2 ef-
ects simulated by the TRENDY models. Then, they
sed a residual consistency test that found consis-
ency between the regression residuals and models
imulating LAI in the absence of any CO 2 forcing. 

etection of aridity thresholds 
e extracted the aridity value for each plant biomass
easurement and LAI value. We conducted a mul-
iple regression analysis to examine the relation-
hip between plant biomass, vegetation type, and
oil total nitrogen. The residuals from this regres-
ion were then used as the response variables for
lant biomass. The influence of vegetation type
nd soil total nitrogen was already accounted for in
he random forest analysis. We then used a similar
ethod to Berdugo et al. (2020) [ 4 ] to detect arid-

ty thresholds. Briefly, we fitted linear and nonlin-
ar (quadratic and general additive models) regres-
ions for the plant biomass/LAI (i.e. residuals) ver-
us aridity data, and selected the model with the
owest Akaike Information Criterion (AIC) value.
 threshold only occurs when the nonlinear regres-
ion fits the data better than the linear regression.
n these cases, we then fitted threshold models by
egmented (continuous models), step (discontinu-
us models) and stegmented (discontinuous mod-
ls) regressions. Each of these models provides a
arameter for describing the value in the predictor
i.e. aridity) that shows the shift in plant biomass
regression slope, intercept or slope + intercept for
egmented, step and stegmented regressions, respec-
ively). Stegmented is a combination of step and
egmented regressions. Again, we used the lowest
IC value to choose the best fitting among the
hree threshold models ( Table S2 ). If general addi-
ive models where the best model when compared to
hreshold models, we selected the threshold yielded
Page 9 of 12 
by segmented regressions to evidence the point of 
maximum curvature of the regression [ 4 ]. The gam
package was used to fit general additive models [ 86 ],
while the MASS package was used to estimate the 
AIC value. The chngpt package was used to fit seg-
mented, step and stegmented regressions [ 87 ]. We 
implemented all the analysis in R 3.5.3. 

To further test whether the identified thresholds 
significantly affected the slope and/or intercept of 
the fitted lines, we bootstrapped the linear regres- 
sions at both sides of each threshold for each variable.
We then extracted the slopes and intercept value of 
each response variable estimated on both sides of 
the thresholds and tested significance using a Mann–
Whitney U test. Furthermore, we bootstrapped the 
threshold values of the best-fitting models under 
ambient and N/CO 2 enrichment, and compared 
the differences in the observed thresholds using the 
t -test. 

Prediction of future land area crossing 

the aridity threshold 

We adopted a space-for-time substitution approach 
to predict changes in global land areas that under 
RCP 4.5 and 8.5 wi l l probably cross the estimated
aridity thresholds by 2100. First, we obtained fu- 
ture aridity projections from the Coupled Model 
Intercomparison Project Phase 5 [ 2 , 66 ]. Second,
we mapped the current and future land area with 
aridity values (1–Aridity Index) that cross the esti- 
mated threshold, and then calculated both expand- 
ing and shrinking areas under future climatic condi- 
tions. Third, given that N addition might result in a
different aridity threshold, we calculated the differ- 
ence in the thresholds observed between N addition 
and ambient levels of N ( �threshold). In locations 
with rising or falling N deposition in the future, we
increased or decreased �threshold, respectively. We 
obtained N deposition data from the datasets of the 
Representative Concentration Pathways ( https:// 
tntcat.iiasa.ac.at/RcpDb/ ) [ 88 , 89 ]. Both aridity and 
N deposition datasets had a spatial resolution of 
0.5° × 0.5°. Since there were limited biomass mea- 
surements of CO 2 enrichment from field experi- 
ments to detect aridity-induced thresholds, we used 
the aridity threshold estimated using remote sensing 
and multi-model simulations of LAI. All maps were 
visualized in ArcGIS 10.5 (ESRI, USA). 

We also predicted the impacts of future changes 
of aridity and N deposition on AGB using a space-
for-time substitution approach. First, based on the 
best regression model between the AGB measure- 
ments and aridity values under ambient conditions, 
we predicted future �AGB based on changes in arid- 
it y ( �aridit y) by 2100 under the RCP 4.5 and 8.5

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad242#supplementary-data
https://tntcat.iiasa.ac.at/RcpDb/
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cenarios. 

AGB = a + b × aridity (1)

�AGB = b × �aridity (2)

Where a and b are the regression coefficients,
hich might be different before and after the de-
ected aridity thresholds (see Detection of aridity
hresholds section). 
Second, given that the 167 N addition ex-

eriments use different amounts of N, we stan-
ardized the AGB difference between N addition
nd ambient conditions to ‘per unit N added’, i.e.
AGB N addition −AGB ambient )/N addition . According to
he current and future amounts of atmospheric N
eposition, we predicted future �AGB caused by
hanges in N deposition ( �N deposition ). 

�AGB = ( AG B N addition −AG B ambient ) / N addition 

×�N deposition (3)

Finally, we predicted future �AGB due to changes
n both aridity and N enrichment by 2100 under the
CP 4.5 and 8.5 scenarios. 
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