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Summary  

 The widely documented phenomenon of nighttime stomatal conductance (gsn) could lead to 

substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal 

conductance confers a functional advantage. Given that studies of gsn have focused on controlled 

environments or small numbers of species in natural environments, a broad phylogenetic and 

biogeographic context could provide insights into potential adaptive benefits of gsn.  

 We measured gsn on a diverse suite of species (n = 73) across various functional groups and 

climates-of-origin in a common garden to study the phylogenetic and biogeographic/climatic 

controls on gsn and further assessed the degree to which gsn co-varied with leaf functional traits 

and daytime gas exchange rates. 

 Closely related species were more similar in gsn than expected by chance. Herbaceous species had 

higher gsn than woody species. Species that typically grow in climates with lower mean annual 

precipitation – where the fitness cost of water loss should be the highest – generally had higher 

gsn. 

 Our results reveal the highest gsn rates in species from environments where neighboring plants 

compete most strongly for water, suggesting a possible role for the competitive advantage of gsn.  

 

Key Words  

Stomata, gas exchange, transpiration, ecosystem flux, phylogenetic, biogeographic, adaption. 

 

INTRODUCTION 

Plants capture atmospheric CO2 for photosynthesis and lose water vapor through stomatal 

pores on leaves. Thus, stomata strongly influence the carbon and water fluxes of terrestrial 

ecosystems and modeling stomatal behavior is essential for projections of climate impacts on 

ecosystems, land-atmosphere interactions, and carbon cycle feedbacks (Berry et al. 2010; Jasechko et 

al. 2013; Franks et al. 2017; Anderegg et al. 2018). A broad body of research has examined how 

stomatal conductance during the day responds to genetic controls and/or environmental conditions 

(Buckley, 2005; McAdam & Brodribb, 2015; Brodribb & McAdam, 2017). However, it is well 

established that many plants continue to lose water at night. In particular, there is extensive evidence 

of significant nighttime stomatal conductance (gsn) and transpiration (En) in a diverse range of C3 and 

C4 plants across various habits and in multiple climate zones (Snyder et al. 2003; Daley & Phillips, 

2006; Caird et al. 2007; Dawson et al. 2007; Phillips et al. 2010; Ogle et al. 2012; Hoshika et al. 
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2018). These observations are at odds with optimal stomata theories, which suggest that C3 and C4 

plants should close stomata completely to avoid water loss when there is no carbon gain and little 

need to cool leaves during the night (Snyder et al. 2003; Caird et al. 2007).  

En typically ranges from 10% to 15% of daytime rates, and can reach up to 20-30% of 

daytime rates (Bucci et al. 2004; Caird et al. 2007; Sellin & Lubenets, 2010; Ogle et al. 2012). This is 

a substantial water flux, especially for plants in dry regions where growth is often water limited (Yu et 

al., 2016; Chen et al., 2018). Previous studies have mainly used sap flow sensors to measure En at tree 

individual scales (Daley & Phillips, 2006; Caird et al. 2007; Dawson et al. 2007). This method, 

however, does not allow for the direct measurements of gsn. Sapflow also  does not generally partition 

recharge of plant water storage and En and therefore could overestimate the magnitude of En. 

Quantification of En at large scales remains difficult because of the technical obstacles in using eddy 

flux tower and remote sensing data during the nighttime (De Dios et al., 2015). However, in the few 

instances where quantification has been attempted, En has been found to be significant (8-9% of 

daytime transpiration) (Novick et al. 2009). Most large-scale ecosystem models either ignore 

nighttime water loss or set a low and constant value of gsn or En, which can lead to large biases in the 

estimates of plant water-use efficiency, ecosystem transpiration, and ecosystem carbon/water cycling 

in a changing climate ( Novick et al. 2009; Zeppel et al. 2014; De Dios et al. 2015; Lombardozzi et 

al. 2017; Hoshika et al. 2018).  

Why would plants not completely close their stomata at night? The primary non-adaptive 

hypothesis that has been proposed is the “leaky stomata” hypothesis, where fully closing stomata 

could have an energetic cost that plants only pay during very dry conditions and thus stomata remain 

partially open at night. This hypothesis appears to be at odds with the significant documentation of gsn 

in dry environments, where the costs of water loss should be high.  

The primary adaptive hypotheses that have been proposed center on plant functional response 

to environmental conditions including water stress, nutrient availability, and oxygen availability. 

There have been a number of studies suggested that some species can actively reduce or close stomata 

during the night in response to water stress and/or ABA (Caird et al. 2007; Cirelli et al. 2015), 

although several shrub species in North American deserts exhibited differential daytime and nighttime 

stomatal behavior in response to environmental conditions (Ogle et al., 2012; Zeppel et al., 2012). 

This could lead to refilling capacitance and removing embolism in stems (Zeppel et al. 2014), which 

would lead to improved early morning photosynthesis (Caird et al. 2007). However, experiments 

manipulating water/ nutrient conditions or vapor pressure deficit (VPD), which can also affect 

photosynthesis, showed a divergent response of gsn (Caird et al. 2007; Zeppel et al. 2014).    
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Studies have also proposed that gsn could benefit plants through increasing nutrient 

availability for root uptake (Scholz et al., 2007) and oxygen delivery for sapwood parenchyma cells 

(Daley & Phillips, 2006). The hypothesis of improved nutrient availability has been extensively 

studied (Caird et al., 2007; Zeppel et al., 2014). Both gsn and En result in increased access by roots 

surfaces to soil nutrients through mass flow and diffusion (Oliveira et al. 2010; Kupper et al. 2012) 

and thus likely improves nutrient availability to plants. The causality between gsn and nutrient uptake, 

however, has garnered weak-to-mixed evidence (Howard & Donovan, 2007; Christman et al. 2009; 

Kupper et al. 2012).  

An additional adaptive ecological mechanism that has been proposed suggests that gsn could 

be a strategy to reduce hydraulic redistribution in the soil, thereby keeping water resources close to an 

individual plant rather than moving that water towards neighboring competitors (Huang et al. 2017); 

this hypothesis has shown some initial empirical support (Neumann et al. 2014; Yu et al. 2018). 

Ultimately, the factors or mechanisms affecting gsn remain rather unclear and studies on this 

hypothesis to date have been largely carried out in a controlled (e.g. greenhouse or growth chamber) 

environment (Caird et al. 2007; Zeppel et al. 2014).  

Some studies have indicated that there may be genetic controls on gsn (Caird et al. 2007; 

Costa et al. 2015; Reuning et al. 2015) and that gsn may have a biogeographic signal (Caird et al. 

2007; Zeppel et al. 2014). However, it remains unclear whether or not there is a strong phylogenetic 

signal in functional traits of gsn (i.e., the tendency for trait relatedness among related species) and 

whether or not gsn has evolved as an adaptation to climate or soil nutrient conditions in a species’ 

native range. A strong phylogenetic or biogeographic signal could inform the estimates of gsn at large 

scales (Moles et al., 2005; Swenson et al., 2017), which are currently limited by technical obstacles 

(De Dios et al. 2015) but crucial for Earth system models (Lombardozzi et al. 2017). The genetic 

controls on gsn could also offer new horizons for breeding programs to cultivate crops that have lower 

gsn and the same growth, thus increasing water-use efficiency (Costa et al. 2015; Coupel-Ledru et al. 

2016).  The studies to date only leveraged a narrow spatial range of native habitats with a small 

number of co-occurring species to examine gsn in native climate conditions (Snyder et al. 2003; Ogle 

et al. 2012). While Lombardozzi et al. (2017) compiled a large dataset (n =204) to better represent gsn 

in land surface models and allow the comparison of gsn among different functional groups, these 

observed gsn values were estimated by a variety of methods and measurement conditions, which limits 

rigorous comparison across functional groups, and had very limited information on boreal climate 

zones. Hoshika et al. (2018) compiled a large dataset to show the correlation between daytime 

maximum gs in woody plants and mean annual precipitation, but the information of climatic 

(biogeographic) controls on gsn is limited.  
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Thus, there is a critical need for a large common garden study in which the gsn of species from 

a broad diversity of clades can be sampled in the same climate/growth environment to provide 

rigorous quantification of cross-species patterns and insights into potential adaptive drivers of gsn. 

Here, we quantify gsn on 73 species among a number of different clades growing in a common garden 

in a dry climate (e.g. substantial VPD) to examine the phylogenetic and biogeographic controls on gsn. 

The species represent various life forms (i.e., trees, shrubs, grasses and forbs) originating from diverse 

climate zones (i.e., boreal, n = 32; temperate dry, n = 15; and temperate wet climate, n = 26). We ask: 

(1) is there evidence for a phylogenetic signal in gsn? (2) does gsn vary among species as a function of 

their native climate, and soil nutrient conditions and, if so, to which climate or soil nutrient variables? 

3) are there consistent differences in gsn among different life forms and climate zones? 4) does gsn 

correlate with leaf anatomy and physiology among species? 

 

MATERIAL AND METHODS 

Study site, species identification, and methods of observations  

We carried out this study in the Red Butte Garden in Salt Lake City, Utah, USA (40.7655° N, 

111.8238° W), the largest botanical garden in the Intermountain West. The climate is characterized by 

a semi-desert steppe with hot, dry summers and long, cold winters. Mean annual precipitation is about 

400-500 mm with most precipitation occurring in winter and spring. At the beginning of May 2017, 

we identified 93 species representative of various life forms (i.e., trees, shrubs, grasses, and forbs) 

(Engemann et al., 2016), leaf forms, and leaf shapes. Species names were confirmed with the 

Taxonomic Name Resolution Service (TNRS; Boyle et al. 2013). Three individuals with similar size 

and proximity in distance were identified in each species. In each individual, one recently mature and 

fully-expanded leaf was marked for the measurements of gas exchange and traits. To control for 

differences in microclimate, leaves on woody plants were located at similar canopy heights and were 

generally sun-exposed and south-facing.  

            Nighttime gas exchange was measured for each individual using a LI-6800 (Li-Cor, Inc., 

Lincoln, NE, USA) with the 6 cm
2
 leaf chamber (circle; radius = 1.38 cm) in a closed system mode. 

These measurements were conducted on several continuous clear nights (4-5) to ensure similar 

climate for each sampling event. Sampling was carried out once a month from May to August. For all 

of the analyses in this study, we used the measurements from one sampling event during June because 

it best captured the gsn max of all species. Volumetric soil water content at soil depth of 20 cm was 

measured (n = 3 for each species) at locations near to (<1 m from plant base) where gas exchange 

measurements were made; the measurements were conducted in the late afternoon before nighttime 

gas exchange using decagon GS3 soil moisture sensor. A circadian rhythm in gsn has been observed in 

some species (Caird et al. 2007; Ogle et al. 2012; Resco de Diosa & Gessler, 2018), with a gradual 
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increase of gsn after midnight and maximum values during predawn hours. Thus, to approximately 

estimate the maximum gsn across a large sample size of species, nighttime gas exchange 

measurements were made 2-3 h before dawn. We present the maximum gsn observed, the magnitude of 

which is quite low relative to daytime gs, but provides a useful species-level trait similar to daytime 

maximum stomatal conductance (e.g. Oren et al. 1999). We took the maximum gsn for each of the 

individuals of a species and then averaged. Thus, the mean of maximum gsn over individuals across 

species was used for analyses. This allowed for less uncertainty in measurements of gsn over a large 

sample size of species. During the measurements, reference CO2 was set to 400 mol mol
-1

, while 

VPD and temperature tracked ambient. To reduce the bias of data recording (logging), the same 

standard of judging the stability of gas exchange data was used. We monitored the gsn and took the 

measurement when the slope of gsn vs. time was smaller than 0.0015 mol m
-2

 s
-2

. For some species 

with small or (semi)cylinder shaped leaves that do not completely cover the leaf chamber area, the net 

gas exchange rate (stomatal conductance and respiration) was determined as G = Gr × 6/S, where Gr is 

the recorded value of the net gas exchange rate by LI-6800 and S is the surface area (cm
2
) of the leaf 

(Table S1).  

              Day time gas exchanges were also measured between 09:30 h and 12:00 h on the days before 

nighttime measurements; the 'one-point method' was then used to estimate maximum carboxylation 

capacity (Vcmax) for each species (De Kauwe et al., 2016). This method requires estimating leaf 

respiration during the day. Assuming that leaf respiration during the day is 1.5% of Vcmax, this method 

was found to estimate Vcmax with an r
2
 of 0.95, as compared to the traditional A–Ci curve fitting (De 

Kauwe et al., 2016). In the middle of June, a subset (n = 20) of species across the range of gsn and life 

forms (n = 8 for trees; n = 3 for shrubs; n = 4 for grasses; n = 5 for forbs) were selected for estimates 

of stomatal density. Stomata peels from adaxial surfaces of the leaves used for gas exchange were 

sampled using clear nail polish and tape. Stomatal density was counted independently by two trained 

observers using light microscope images (n = 10 per leaf) on each individual leaf peel. At the end of 

June 2017, a subset (n = 54) of species across the range of gsn and life forms were also sampled for 

estimating specific leaf area (SLA).  

 

Phylogenetic tree, species native ranges and climate  

The phylogenetic tree was constructed using phylomatic in PHYLOCOM 4.2 (Webb et al. 2008) with 

the ‘R20100701’ megatree. Approximate crown ages for each clade were calculated using bladj. 

Internal node constraints were from Bell et al. (2010) and subsequently corrected for file transcription 

errors (Gastauer & Meira-Neto, 2013). To construct a binary tree, we used the multi2di function in the 

‘ape’ package.  

          Global Biodiversity Information Facility (GBIF; http://www.gbif.org) was used to determine 

native distribution of the species in May 2018. To extract species’ geo-referenced locations (latitude 

and longitude), we first used the ‘dismo’ R package. We then used the following criteria (Zohner et 
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al., 2016) to filter reliable records (locations) of species: 1) only records from a species’ native 

continent (North America, Europe, and Asia) were included; 2) coordinate duplicates within a species 

were removed; 3) records based on fossil specimen were removed; 4) spatially clustered records 

within 10 km were removed to correspond with the spatial resolution (bio 2.5m; 10 km) of WorldClim 

(http://www.worldclim.org/bioclim) used to determine the climate of native species ranges,; 5) hybrid 

species and species without records in GBIF were excluded. This led to a total sample size of 73 

species with adequate distribution data to calculate climate-of-origin (Table S1).  

            Species-specific climate ranges were derived from WorldClim variables based on species’ 

georeferenced locations. WorldClim variables included annual mean temperature (BIO1), mean 

temperature of driest quarter (BIO9), mean temperature of warmest quarter (BIO10), annual 

precipitation (BIO12), precipitation of driest quarter (BIO17), precipitation of warmest quarter 

(BIO18), annul mean vapor pressure deficit (VPD), vapor pressure deficit of driest quarter (VDQ), 

and vapor pressure deficit of warmest quarter (VWQ) and were chosen based on previous research on 

gsn (Daley & Phillips, 2006; Caird et al. 2007; Dawson et al. 2007; Zeppel et al. 2014).  Temperature 

and precipitation variables were downloaded from the standard WorldClim Bioclimatic variables for 

WorldClim v2 (http://worldclim.org/version2), while VPD, VDQ, VWQ were not available as 

WorldClim outputs. Thus, we quantified VPD, VDQ, VWQ following the same protocol as the 

outputs of standard WorldClim Bioclimatic variables (http://worldclim.org/bioclim). With respect to 

the impacts of soil nutrients, we used a global soil nitrogen (SN) database with > 3500 soil profiles 

(Zinke et al. 1998) and inverse distance interpolation approach to generate a global raster of soil 

nitrogen. We also used a global raster of soil organic carbon (SOC) at 2 m soil depth with 10 km 

spatial resolution, which plays an important role in nutrient cycling (Schmidt et al. 2011) and thus 

was represented here as a coarse proxy for soil nutrients; the data was downloaded from 

https://www.soilgrids.org.  

       To investigate the difference of gsn among climate zones, the species’ georeferenced locations 

were assigned to sub-climate zones using the Koeppen–Geiger system (Peel et al., 2007). When 

species were located in multiple sub-climate zones, the sub-climate zone where the species has the 

maximum number of records was used (Table S1). To evaluate the gsn on a larger (climate zone) scale, 

we then joined sub-climate zones into broader climate zones - temperate dry (TeD), temperate wet 

(TeW), and boreal (Bo) climate zones, following the criteria: TeD (BSk, n = 10; Csa, n = 4; Csb, n = 

1); TeW (Cwa, n = 1; Cfa, n = 14; Cfb, n = 11); Bo (Dwb, n = 1; Dfa, n = 4; Dfb, n = 26; Dfc, n = 1) 

(Peel et al. 2007).  
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Data analysis  

Two complementary approaches were used to determine how species’ phylogenetic relationships and 

native climate and soil nutrient ranges (biogeography) affects gsn.  

The first approach was to determine the phylogenetic and biogeographic signals of gsn 

separately. To this end, we tested for phylogenetic signal in mean gsn among the three individuals in 

each species using Pagel’s lambda () following Münkemüller et al. (2012). Values of  approaching 

1 indicate the fit of a Brownian motion model of evolution and suggest that mean values of gsn are 

more closely related among relatives than expected by chance, while values approaching 0 indicate 

phylogenetic independence. Pagel’s lambda () was determined using the phylosig function in the 

‘phytools’ package; 1000 simulations of Pagel’s lambda () were performed and the significance was 

assessed using a likelihood ratio test (Revell 2012).  

For the biogeographic signal of gsn, we determined the biogeographic signal of gsn by testing 

which species’ native climate and soil nutrient variables (BIO1, BIO9, BIO10, BIO12, BIO17, BIO18, 

VPD, VDQ, VWQ, SN, SOC) were important in affecting gsn using multivariate linear regression. To 

avoid multicollinearity in our models, we used a pairwise correlation matrix and removed any variable 

that had high correlations (R>0.7) with other predictor variables following previous studies (Anderegg 

et al. 2013). The variables (BIO1, BIO10, BIO12, BIO17, VDQ, SOC) that gave the best prediction of 

species-level variation in gsn were retained in the model. SOC was used as the sole soil nutrient 

variable because SOC and SN were highly correlated. 

After standardizing all independent and dependent variables to z-scores, we then used two 

methods of investigating variable importance of this reduced set of predictor variables in affecting gsn. 

In the first approach, both forward and backward stepwise model selection via Akaike Information 

Criterion were used to determine the most parsimonious model and the coefficients of the predictor 

variables that remained in the model (Burnham & Anderson, 2004). In the second approach, machine 

learning algorithm Random Forests were used to determine variable importance for each variable 

(Breiman, 2001). Higher values of the mean decrease in accuracy (%IncMSE) indicate the increased 

importance of the variables. We ran 1000 simulations of machine learning algorithm Random Forest 

and calculated mean  standard deviation values of %IncMSE.  

            In the second approach, we used hierarchical Bayesian models to investigate the influence of 

native climate and soil nutrient ranges (biogeography) on gsn by accounting for possible effects of 

shared evolutionary history (phylogenetics). To this end, using the Bayesian phylogenetic regression 

method (Villemereuil et al., 2012), we incorporated the phylogenetic structure of the data into the 

hierarchical Bayesian models by converting the 73-species ultrametric phylogeny into a scaled (0–1) 

variance–covariance matrix (Zohner et al. 2016). The resulting posterior distributions are a direct 

statement of the effect magnitude of species native climate and soil nutrient (represented by mean and 

median values of climate and soil nutrient ranges) on mean gsn.  
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            Using the hierarchical Bayesian models accounting for possible effects of shared evolutionary 

history, we also separately investigated the difference of gsn among different life forms (trees, shrubs, 

grasses, and forbs) and among different climate zones (Bo, TeD, and TeW). In these analyses, 

different life forms (trees, shrubs, grasses, and forbs) or different climate zones were treated as binary 

(independent) variables. We also incorporated plant functional types (trees, shrubs, grasses, and forbs) 

as random effects into the hierarchical Bayesian models because gsn was significantly different among 

life forms and then examined the influence of native climate and soil nutrient ranges (biogeography) 

on gsn. To investigate the sensitivity of results to number of observations (records) in each species in 

GBIF, we excluded species with less than 30 geo-referenced records within their native continent. 

Most of the species with limited observations were from Asia (Table S1). All of the analysis using 

hierarchical Bayesian models used standardised data and the results can be interpreted as relative 

effect sizes. Thus, to better visualize the variations of unstandardized gsn among different life forms 

and climate zones, we 1) used box and whisker plots to display the distribution of gsn and 2) 

analyzed/plotted the mean and 95% confidence interval.  

         Finally, we used univariate linear regression analysis to examine the relationships between gsn 

and a number of environmental, physiological and morphological variables including volumetric soil 

water content, day time gs, photosynthetic rates, maximum carboxylation capacity of photosynthesis 

(Vcmax), nighttime respiration, stomatal density, and specific leaf area (SLA). In addition, due to the 

strong relationship between Vcmax and gsn, we included Vcmax as a fixed effect factor and plant 

functional group as a random effect factor in the hierarchical Bayesian models to investigate the 

influence of biogeographic climate on gsn.  

 

Data availability 

The data supporting the results are archived on the Hive, the University of Utah’s Open Access 

Institutional Data Repository and the data DOI is https://doi:10.7278/S50D-E9J1-NYG0. 

 

RESULTS 

We observed a wide range of gsn across the diverse set of species, with mean gsn ranging from 0.002 

mol m
2-

 s
-1

 to 0.05 mol m
2-

 s
-1

 across species and generally smaller values in conifers (Fig. 1). Pagel’s 

lambda () in our species was 0.37 (n = 73) and the p-value of the likelihood ratio test was 0.047. This 

indicates weak evidence that mean gsn is more closely related among relatives than would be expected 

by chance alone under a model of Brownian motion.  
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       With respect to the influence of biogeography examined via model selection, we found that 

mean annual precipitation (MAP) of species’ native climate ranges was the single best predictor of gsn 

(P = 0.008 for mean and P = 0.007 for median) and plants from locations with lower precipitation had 

higher gsn (Figs 2a, S1a). Precipitation of the driest quarter (PDQ) was retained in the model selection, 

but its relationships with gsn were not significant (P = 0.122 for mean and P = 0.086 for median). In 

contrast, both soil nitrogen (SN) and soil organic carbon (SOC), used as a coarse proxy for soil 

nutrients, were not good predictors of gsn and were not retained in the model. We observed similar 

patterns using the machine learning algorithm Random Forests, which showed highest values of the 

mean decrease in accuracy (%IncMSE) and thus the importance of MAP in native climate in 

influencing mean gsn (Figs 2b, S1b).  

        Using hierarchical Bayesian models to investigate the influence of biogeographic control on 

gsn, while accounting for possible effects of shared evolutionary history, we found that Pagel’s  

values were significantly greater than 0.2 for the scenarios of using mean and median values of native 

climate and soil nutrient condition ranges (AMT, MTW, MAP, PDQ, VDQ, SOC or SN), respectively 

(Figs. 3a, S2). Similar to the results above, this provides some evidence for gsn values being more 

closely related among relatives than would be expected by chance alone. After accounting for the 

plant phylogenetic differences, MAP still showed the significant and negative relationship with gsn (n 

= 73) both using mean and median values of native climate and soil nutrient condition ranges (Figs. 

3b, c, S2). This pattern was robust after excluding species (n = 9) with less than 30 georeferenced 

records in GBIF (Table S1; Fig. S3).  

 The results, without accounting for possible effects of shared evolutionary history, demonstrated a 

higher gsn in herbaceous species (grasses and herbs) than trees and/or shrubs (Figs 4a, S4a) and a 

higher gsn in boreal climate zone than temperate climate zones (Figs 4b, S4b). Using the hierarchical 

Bayesian models to account for possible effects of shared evolutionary history, the results 

demonstrated similar patterns of higher gsn in herbaceous species and in the boreal climate zone (Fig. 

4c, d), but the differences in gsn across species between the boreal and temperate climate zones were 

large (Figs 4d, S4b). Since gsn largely varied across life forms, we accounted for the influence of life 

forms by incorporating them as random (binary) factors into the hierarchical Bayesian models to 

examine the biogeographic control on gsn. The results still showed the significant negative relationship 

between gsn (n = 73) and MAP, in contrast to PDQ and SOC (Fig. S5).  

        The univariate regression analysis showed a non-significant correlation between gsn  

and the local soil water conditions in the common garden (P = 0.35, Fig. S6a), suggesting minimal 

influence of local soil conditions on gsn. The gsn was significantly related to day time stomatal 

conductance (P < 0.0001, Fig. S6b), photosynthetic rate (P < 0.0001, Fig. S6c) and higher night 
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respiration (P < 0.0001, Fig. S6d) across species. The results also showed that gsn significantly 

increased with maximum carboxylation capacity (Vcmax; n = 73) (P = 0.0006, Fig. S7a), while the 

relationships with stomatal density (n =20; P = 0.17) (Fig. S7b) and specific leaf area (SLA) (n =54; P 

= 0.98) (Fig. S7c) were not significant. Finally, to account for the effects of Vcmax in biogeographic 

signals, we also incorporated it as a fixed effect factor plus plant functional group as a random effect 

factor into the hierarchical Bayesian models. Accounting for these effects did not change the results 

(Fig. S8). Overall, the analyses robustly suggested that MAP was the best predictor of gsn; plants in 

locations with lower rainfall conditions had higher gsn.  

 

DISCUSSION  

We analyzed the underlying phylogenetic and biogeographic influences, as well as leaf morphological 

and physiological traits, on plant nighttime stomatal conductance by measuring a suite of diverse 

species grown in a common climate. The values of gsn were within the lower ranges of previously 

reported values (Caird et al. 2007; Zeppel et al. 2014; Lombardozzi et al. 2017). We found weak 

evidence for a phylogenetic pattern of gsn wherein closely related species had more similar gsn than 

expected by chance (Figs 1 and 3). For instance, the conifers (e.g., Pinales) all had similarly low mean 

gsn, while the grasses (e.g., Poaceae) all had particularly high mean gsn. This suggests that estimates of 

gsn at large scales carried out by reconstructing gsn based on their phylogenetic positions may not be 

an appropriate approach (Moles et al. 2005; Swenson et al. 2017). We did, however, detect substantial 

differences in gsn between life forms of grasses versus woody plants, which could be valuable for 

quantifying and simulating the large-scale impacts of gsn on carbon/water cycling in Earth system 

models that typically simulate ecosystems with “plant functional types” (Lombardozzi et al. 2017).  

            Mean annual precipitation (MAP) rather than temperature has been found to affect daytime 

maximum gs (Hoshika et al., 2018). In this study, we found robust evidence of gsn adaptations to 

species’ native climate range instead of local soil (water) conditions. Even after accounting for weak 

patterns of phylogenetic conservatism, species typically found in locations with lower MAP had 

higher gsn (Fig. 3). This pattern does not change based on choice of number of species (Fig. S3), the 

incorporation of plant functional group as a random effect (Fig. S5), or Vcmax as a fixed effect (Fig. 

S8). Our results are consistent with previous studies that found higher En (20-30%) relative to daytime 

rates among species in deserts and savannas (Bucci et al. 2004; Caird et al. 2007; Ogle et al., 2012). 

These results are interesting because they suggest that in dry regions where water is frequently 

limiting plant growth (Yu et al. 2016; Chen et al. 2018), plants exhibit substantial nighttime stomatal 

conductance. This supports an adaptive benefit of nighttime stomatal conductance because the fitness 

costs of water loss in these regions are likely high. In other words, the non-adaptive “leaky stomata” 
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hypothesis would predict that highest gsn should occur in regions where the fitness cost of water loss 

during the night is lowest (i.e. wet regions), which is not what we observed.  

           Previous studies have extensively investigated the impacts of soil nutrients on gsn and have 

shown divergent response of gsn to soil nutrient conditions (Howard & Donovan, 2007; Christman et 

al. 2009; Kupper et al. 2012). Our study did not find strong evidence for a  correlation between gsn and 

the native soil nitrogen (SN) or soil organic carbon (SOC) (Figs. 3, S2, S5, S8), at least within the 

coarse constraints of the global datasets analyzed here. While we did not measure the local soil 

nutrients in the common garden, it is likely that local soil nutrient conditions would have minimal 

influence on gsn. In fact, a causal relationship between gsn and soil/plant nutrients still remains highly 

elusive (Kupper et al. 2012). In contrast to the hypothesis and evidence that gsn changes with low soil 

nutrient conditions (Scholz et al. 2007), extensive studies have shown the opposite pattern: higher 

rates of gsn in species with relatively high overall growth rate and leaf/soil nitrogen concentrations 

(Daley & Phillips, 2006; Phillips et al. 2010; Kupper et al. 2012).  

       Our observation that species from dry regions have higher gsn is consistent with hypotheses 

that plant night stomatal opening may benefit plants by refilling capacitance and removing embolism 

in stems (Zeppel et al. 2014), especially considering that plants are water stressed and in some cases 

may have higher risk of embolism in drylands (Tyree & Zimmermann, 2002; Brodersen & McElrone, 

2013). Thus, the large variation in gsn in lower mean annual precipitation (i.e., MAP < 1200 mm) (Fig. 

2) may reflect differences in plant functional strategies with respect to capacitance and vulnerability 

to embolism ( Brodersen & McElrone, 2013; Mcculloh et al. 2014; Zeppel et al. 2014). Alternatively, 

we suggest that our biogeographic patterns are more consistent with the hypothesis that nighttime 

water loss may provide a competitive advantage by curtailing passive water flow or hydraulic 

redistribution (Neumann et al. 2014; Yu et al. 2018), thereby improving plant fitness where plants 

compete belowground for water. Maintaining stomata slightly open would create a water potential 

gradient in the plant-soil hydraulic continuum that would favor keeping soil water close to an 

individual plant’s rooting system and prevent water from diffusing along passive water potential 

gradients in the soil to neighboring plants (Huang et al. 2017). Plant competition for water is likely 

most intense in dry regions and these scenarios are exactly where we observed the highest gsn (Figs 2, 

3). This hypothesis of hydraulic redistribution may be more important for woody plants, which 

usually have deep roots and thus higher rates of hydraulic redistribution than herbaceous species 

(Neumann & Cardon, 2012; Yu & D'Odorico, 2015).  

     We observed the shifted and higher rates of gsn in forbs than grasses after accounting for plant 

phylogenetics, thus suggesting the role of plant phylogenetics in affecting gsn across life forms (Figs 

4a, S4). However, regardless of influence of plant phylogenetics, higher rates of gsn were found in 

herbaceous species (grasses and forbs) than woody species (Figs 4a, S4), similar to other studies 
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(Lombardozzi et al. 2017; O’Keefe & Nippert, 2018). The high rate of gsn in herbaceous species may 

result from relatively high overall growth rate (Chen et al. 2018) and thus plant photosynthesis and 

starch accumulation, which have been found to affect guard cell osmoregulation and increase gsn 

(Lascève et al. 1997; Easlon & Richards, 2009), consistent with our observed positive relationship 

between daytime stomatal conductance and photosynthesis and gsn (Fig. S6). The high rate of gsn in 

herbaceous species may support the hypothesis of the competitive advantage of soil moisture uptake 

by herbaceous species in shallow soil due to the high density or surface areas of fine roots (Steudle, 

2000; Lombardozzi et al. 2017; O’Keefe & Nippert, 2018). In drylands, precipitation events more 

often wet soil shallow layers (Yu et al. 2016; Chen et al. 2018) and it could be advantageous for 

herbaceous species to preferentially use the shallow soil moisture through daytime and nighttime 

water uptake/transpiration. This reduces the diffusion of water along passive water potential gradients 

in the soil to its competitors (i.e., woody plants) and can even lead to the bottleneck effect of 

restricting the tree recruitment (Bond 2008).  

       Previous studies have found high values of gsn in tropical deciduous trees (Caird et al. 2007), 

as well as high values of En estimated by sap flow in Mediterranean ecosystems (Barbeta et al., 2012) 

and tropical rainforests (Wallace & McJannet, 2010). All of these studies, however, were limited to a 

few species and lacking information from boreal climate zone. This study found higher gsn in species 

from boreal as compared to temperate climate zones regardless of plant phylogenetics (Fig. 4b, d). 

After accounting for plant phylogenetics, the higher gsn in the boreal climate zone was even more 

striking (Figs 4d, S4b), in which the conifers dominate and had similarly low gsn. However, we note 

that our species mainly capture the drier regions of boreal climate zone (Fig. S9), which have likely 

led to the high observed gsn, consistent with the effects of MAP on gsn. The substantial role of climate-

of-origin in influencing cross-species patterns of nighttime stomatal conductance sheds light on 

potential adaptive drivers of nighttime water loss. Thus, more studies evaluating gsn and its role of 

native climate ranges are greatly needed in a diversity of vegetation types and across climates. 

        Our findings that species gsn are coupled to, and thus potentially adaptations to, native climate 

indicates that reducing gsn through breeding or genetic modifications may impair plant growth. This 

was demonstrated by an earlier study in Arabidopsis thaliana mutant (Christman et al. 2008). 

However, two recent studies on mutants of Arabidopsis thaliana and Vitis vinifera found that growth 

was unaffected by manipulated reductions in gsn and transpiration (Costa et al. 2015; Coupel-Ledru et 

al. 2016). The divergent results of these studies may be due to different environmental conditions 

(i.e., water availability) during experimental treatments. In fact, growth was not affected by reduced 

gsn or En on Arabidopsis only in well-water conditions where the fitness cost of water loss is low 

(Christman et al. 2009).  
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        Our study has multiple implications for evaluating current ecosystem carbon and water fluxes 

and their dynamics under future climate change scenarios. First, our finding of higher gsn rates in 

plants from dry regions (Fig. 2) (Bucci et al. 2004; Caird et al. 2007; Ogle et al. 2012) highlights the 

need to incorporate representations of gsn in estimating ecosystem carbon/water fluxes, particularly in 

drylands (Dios et al. 2015; Lombardozzi et al. 2017). Second, in increasingly changing climate 

(Easterling 2000), nighttime water loss is likely to alter future ecosystem carbon/water fluxes, while 

quantification of its impacts remains challenging because of uncertainty of the precipitation 

projections (Woldemeskel et al. 2015). Thus, critical consideration of the phylogenetic and 

biogeographic patterns of gsn can help shed insight into the adaptive benefits of gsn in plants and 

inform modeling efforts to predict ecosystem carbon/water dynamics under climate change scenarios. 

Third, high values of gsn correspond with higher values of Vcmax, which typically leads to higher plant 

night respiration. This further suggests the higher fitness cost of water loss in dry regions, whereby 

the higher gsn should confer a functional advantage.  
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native climate and soil nutrients (soil nitrogen, SN) estimated from hierarchical Bayesian models. 

Fig. S3 Relationship between species’ maximum plant night time stomatal conductance (gsn) and its 

native climate and soil nutrients (soil organic matter, SOC) estimated from hierarchical Bayesian 

models after excluding species with less than 30 georeferenced records in GBIF. 

Fig. S4 Means and 95% CIs of gsn among different life forms and different climate zones without 

accounting for possible effects of shared evolutionary history (phylogenetics). 

Fig. S5 Relationship between species’ maximum plant night time stomatal conductance (gsn) and its 

native climate and soil nutrients (soil organic matter, SOC) estimated from hierarchical Bayesian 

models which also account for plant life forms as a random effect. 

Fig. S6 Relationship between species’ maximum plant night time stomatal conductance (gsn) and local 

volumetric soil water content estimated by univariate regression analysis.  

Fig. S7 Relationship between species’ maximum plant night time stomatal conductance (gsn) and day 

time plant stomatal conductance (gsd), and plant traits.  

Fig. S8 Relationship between species’ maximum plant night time stomatal conductance (gsn) and its 

native climate and soil nutrients (soil organic matter, SOC) estimated from hierarchical Bayesian 

models which also account for plant life forms as a random effect and maximum carboxylation 

capacity (Vcmax) as a fixed effect. 

Fig. S9. Annual precipitation (MAP, mean and 95% CIs) in boreal (Bo), temperate dry (TeD), and 

temperate wet (TeW) biomes. 
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Table S1 A summary of species information used in this study.  

 

Figure Legends  

Figure 1 Phylogenetic tree of 73 species from across various functional groups and climates-of-origin 

(see details in Supporting Information Table S1) and its maximum plant night time stomatal 

conductance (gsn). 

Figure 2 (a) Relationship between species’ maximum plant night time stomatal conductance (gsn) and 

mean of annual precipitation (MAP). Regression lines represent univariate relationships rather than 

the output of the full model and are for visualization purposes only. (b) Mean decrease in accuracy 

(%IncMSE, mean and standard deviation) estimated from 1000 simulations of random forests in 

evaluating the importance of native climate, represented by mean, on gsn. Native climate variables are 

annual mean temperature (AMT), mean temperature of warmest quarter (MTW), annual precipitation 

(MAP), precipitation of driest quarter (PDQ) and vapor pressure deficit of driest quarter (VDQ). Soil 

organic carbon (SOC) is represented as an approximation to native soil nutrient conditions.  

Figure 3 Relationship between species’ maximum plant night time stomatal conductance (gsn) and its 

native climate and soil nutrients (soil organic carbon, SOC) estimated from hierarchical Bayesian 

models. (a) Phylogenetic signal (Pagel’s , mean and 95% CIs) for gsn (n =73). (b, c) Standardized 

coefficient estimates (effective posterior means and 95% CIs) for the effects of native climate, 

represented by mean (b) and median (c), on gsn (n = 73). Values reflect standardised data and can be 

interpreted as relative effect sizes. Native climate variables are annual mean temperature (AMT), 

mean temperature of warmest quarter (MTW), annual precipitation (MAP), precipitation of driest 

quarter (PDQ) and vapor pressure deficit of driest quarter (VDQ). Soil organic carbon (SOC) is 

represented as an approximation to native soil nutrient conditions.  

Figure 4 Box and whisker plots of maximum plant night time stomatal conductance (gsn) among 

different life forms (a) and climate zones (b) without accounting for possible effects of shared 

evolutionary history (phylogenetics). Standardized coefficient values (means and 95% CIs) for 

differences in gsn between different life forms (c) and climate zones (d) estimated from hierarchical 

Bayesian models. Life forms are trees, shrubs, grasses, and forbs. Climate zones are boreal (Bo), 

temperate dry (TeD), and temperate wet (TeW). In box and whisker plots, the horizontal lines and 

ranges represent median, first quartile, and third quartile of gsn. In hierarchical Bayesian models, 

values reflect standardised data and can be interpreted as relative effect sizes. 
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