2,282 research outputs found

    Evaluating Communication Tools and Increasing Fruit and Vegetable Consumption in Vermont Head Start Classrooms

    Get PDF
    Introduction: We designed a program for four Head Start classrooms that aimed to: 1) Provide classrooms a tool that would facilitate communication with families about nutrition, 2) Educate families about the MyMeal tool, and 3) Increase fruit and vegetable consumption by providing families with fresh fruits and vegetables Fruit and vegetables are important components of a healthy diet, and sufficient consumption helps reduce the risk of developing cardiovascular disease, cancer, diabetes and obesity. Eating behaviors during childhood are highly parentally influenced and function as the foundation for future eating patterns. Studies have shown that the extent to which fruits and vegetables are present and accessible in the home correlates with the amount of fruit and vegetables eaten by children.https://scholarworks.uvm.edu/comphp_gallery/1210/thumbnail.jp

    Tailoring high precision polynomial architected material constitutive responses via inverse design

    Full text link
    The design of specified nonlinear mechanical responses into a structure or material is a highly sought after capability, which would have a significant impact in areas such as wave tailoring in metamaterials, impact mitigation, soft robotics, and biomedicine. Here, we present a topology optimization approach to design structures for desired polynomial nonlinear behavior, wherein we formulate the problem in such a way as to decouple the nonlinear response from the stiffness. We show results across qualitatively different polynomial behaviors while achieving a high degree of precision, creating a path toward analytically tractable nonlinear dynamical systems. The approach enables access to previously difficult to design for, or hitherto unachieved, nonlinear behavior via optimized structures, which can furthermore be incorporated as unit cells of designer materials with tailored nonlinear properties

    Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting

    Get PDF
    Grand Limited Area Model Ensemble Prediction System (GLAMEPS) is prepared for pan-European, short-range probabilistic numerical weather prediction of fine synoptic-scale, quasi-hydrostatic atmospheric flows. Four equally sized ensembles are combined: EuroTEPS, a version of the global ECMWF EPS with European target; AladEPS, a downscaling of EuroTEPS using the ALADIN model; HirEPS_K and HirEPS_S, two ensembles using the HIRLAM model nested into EuroTEPS including 3DVar data-assimilation for two control forecasts. A 52-member GLAMEPS thus samples forecast uncertainty by three analysed initial states combined with 12 singular vector-based perturbations, four different models and the stochastic physics tendencies in EuroTEPS. Over a 7-week test period in winter 2008, GLAMEPS produced better results than ECMWF’s EPS with 51 ensemble members. Apart from spatial resolution, the improvement is due to the multimodel combination and to a smaller extent the dedicated EuroTEPS. Ensemble resolution and reliability are both improved. Combining uncalibrated ensembles is seen to produce a better combined ensemble than the best single-model ensemble of the same size, except when one of the single-model ensembles is considerably better than the others. Bayesian Model Averaging improves reliability, but needs further elaboration to account for geographical variations. These conclusions need to be confirmed by long-period evaluations

    Extending Object-Oriented Frameworks with Aspects for Enabling Automatic Support for Domain-Specic Modeling

    Get PDF
    In the context of framework-based development, Domain-Specic Modeling (DSM) is a paradigm that raises the level of abstraction of application engineering. Using a Domain-Specic Modeling Language (DSML), applications are described by domain concepts in a model from which the application code is generated. This paper presents an approach for automating the construction of a DSM infrastructure for an object-oriented framework, where a DSML and a code generator for building applications are automatically derived. The approach is able to signicantly reduce the cost of adopting and evolving a DSM infrastructure. The high degree of automation is possible by enhancing frameworks with an additional layer of specialization modules, relying on our previous work on framework specialization aspects. The approach was implemented in our ALFAMA tool, and validated by a case study on the Eclipse RC

    Phase transitions in MgSiO3 post-perovskite in super-Earth mantles

    Get PDF
    The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2 and MgO as the ultimate aggregation form at ~3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth's mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.Comment: Submitted to Earth Planet. Sci. Lett., 28 pages, 6 figure

    The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Get PDF
    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ~300 km s^(–1) to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests

    On-chip generation and dynamic piezo-optomechanical rotation of single photons

    Get PDF
    Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors
    • …
    corecore