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A B S T R A C T
Grand Limited Area Model Ensemble Prediction System (GLAMEPS) is prepared for pan-European, short-range
probabilistic numerical weather prediction of fine synoptic-scale, quasi-hydrostatic atmospheric flows. Four equally
sized ensembles are combined: EuroTEPS, a version of the global ECMWF EPS with European target; AladEPS, a
downscaling of EuroTEPS using the ALADIN model; HirEPS_K and HirEPS_S, two ensembles using the HIRLAM
model nested into EuroTEPS including 3DVar data-assimilation for two control forecasts. A 52-member GLAMEPS
thus samples forecast uncertainty by three analysed initial states combined with 12 singular vector-based perturbations,
four different models and the stochastic physics tendencies in EuroTEPS. Over a 7-week test period in winter 2008,
GLAMEPS produced better results than ECMWF’s EPS with 51 ensemble members. Apart from spatial resolution,
the improvement is due to the multimodel combination and to a smaller extent the dedicated EuroTEPS. Ensemble
resolution and reliability are both improved. Combining uncalibrated ensembles is seen to produce a better combined
ensemble than the best single-model ensemble of the same size, except when one of the single-model ensembles is
considerably better than the others. Bayesian Model Averaging improves reliability, but needs further elaboration to
account for geographical variations. These conclusions need to be confirmed by long-period evaluations.

1. Introduction

This paper presents an evaluation of first tests of a system
for short-range, European-wide probabilistic numerical weather
prediction (NWP) called Grand Limited Area Modeling Ensem-
ble Prediction System (GLAMEPS). GLAMEPS is intended for
operational production as a part of the cooperation between two
European consortia for short-range NWP: HIgh Resolution Lim-
ited Area Modeling (HIRLAM) and Aire Limitée Adaptation
dynamique Developpement INternational (ALADIN).

Probabilistic weather prediction has gradually become real-
ized operationally since Lorenz (1963) and later publications
firmly established the intrinsic limitations of the weather predic-
tion problem (Palmer, 2000; Lewis, 2005). Such predictions are
realized by using ensembles of alternative predictions to sample
the time development of the probability density function (pdf)
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of atmospheric states. The early proposal by Leith (1974) to
use random perturbations proved inadequate, because the full
dimension of the problem was drastically larger than the num-
ber of ensemble members that could be afforded when produced
by numerical models that were state-of-the-art. Random per-
turbations did not grow fast enough and overestimated the real
predictability. This shortcoming could also be due to the low
physical realism of the available numerical weather prediction
(NWP) models, which therefore underestimated the dynamic
activity in the atmosphere. Lorenz (1982) compared forecasts of
different lead times that were valid at the same time to demon-
strate that error growth, which was estimated with the first op-
erational NWP model at European Centre for Medium-Range
Weather Forecasts (ECMWF), was considerably smaller than
the actual error growth measured against the verifying analyses.
The difference in growth rate was particularly underestimated
during the first 1–2 d of the forecasts.

Considerable development work has been invested in select-
ing initial state perturbations that grow sufficiently fast in the
models when compared to prediction errors. Perturbations de-
pending on the actual atmospheric state proved to be crucial.
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Hence ECMWF developed their ensemble prediction system
(EPS) based on singular vectors that maximize the total energy
in the extra-tropical Northern Hemisphere 2 d into the future
(Buizza et al., 1993, 2000; Buizza, 1994; Molteni et al., 1996).
More or less in parallel, National Centers for Environmental
Prediction (NCEP, USA) developed the breeding technique as
a non-linear generalization of the calculation methods for Lya-
punov vectors (Toth and Kalnay, 1993, 1997). Neither of these
methods estimated the actual initial state uncertainty explicitly,
but found spatial structures of variable perturbations that either
had grown fast recently (breeding) or would grow fast during the
next couple of days (singular vectors). As advanced variational
data-assimilation techniques developed and satellite information
was properly included by the technique of observational opera-
tors, more attention was paid to different sources of initial-state
errors. In particular, ensemble techniques were recognized as a
possible tool to estimate the time-dependent model error in com-
bination with Kalman filtering. This idea of ensemble Kalman
filtering, EnKF, was first proposed for oceanic data-assimilation
(Evensen, 1994; Evensen and van Leeuwen, 1996), but is also be-
ing pursued for potential atmospheric applications (Fisher and
Courtier, 1995; Houtekamer and Mitchell, 1998; Fischer and
Andersson, 2001).

A potential benefit of EnKF is a combined estimate of the
initial state and its actual uncertainty. Singular vectors, on the
other hand, are constructed to maximize the total energy of
the perturbations after 2 d, but may be physically unrealistic.
Barkmeijer et al. (1999) therefore constructed initial state sin-
gular vectors that projected onto leading eigenvectors of the er-
ror covariance matrix in the variational data-assimilation. These
structures were more similar to the structures developed by
breeding (Toth and Kalnay, 1997). Since compared the benefits
for the medium range forecasts at ECMWF were small relative
to the computational efforts the method was abandoned.

Since EnKF in its full implementation is computationally ex-
pensive for atmospheric applications, simplifications have been
sought. The ensemble transform Kalman filter (ETKF) was de-
veloped by Bishop et al. (2001) for targeting campaign observa-
tions. The method can be viewed as a generalization of breeding
(Wang and Bishop, 2003), where the perturbations in the breed-
ing cycle are rotated towards leading eigenvectors of the error
covariance matrix when rescaled. The method operates with a
low number of degrees of freedom which is compensated by
using a perturbation inflation factor.

It took until 1980s and onwards into the 1990s before NWP
models started to represent dynamical and physical processes
for quasi-geostrophic atmospheric disturbances with consider-
able realism. Magnusson et al. (2009) demonstrated that the re-
cent versions of the ECMWF Integrated Forecast System (IFS)
model had become dynamically active enough to sustain fast
growth of arbitrary but dynamically realistic perturbations. This
triggers increased attention towards estimating real initial state
uncertainties rather than constructing potentially unrealistic per-

turbations that grow fast. In such a regime, running ensembles of
data-assimilation (EDA) cycles in parallel are considered ideal
for generating alternative initial states (e.g. Hamill et al., 2000),
although it is expensive. In this approach one may use the same
model version and perturb the observations, one may use dif-
ferent models or model versions without perturbing the obser-
vations, or one may do both. Applying EDA in combination
with singular vectors is a new development at ECMWF (Buizza
et al., 2008).

In short range weather prediction actual analysis errors may
indeed dominate over fast-growing structures. A short compar-
ison of various techniques for initial state perturbations with
random perturbations using a simplified model is discussed by
Bowler (2006). The study indicated that the EnKF technique
performs best. Nevertheless, the computationally much cheaper
ETKF is often considered, and it was introduced in the limited
area ensemble prediction system (LAM-EPS) run for the short
range at UK MetOffice (Bowler et al., 2008). Nevertheless, in
full scale verification ETKF was found to be slightly inferior
to straightforward downscaling of the ensembles produced with
their global model (Bowler and Mylne, 2009).

Even though (Simmons and Hollingsworth, 2002) demon-
strated the increased level of realism in model-calculated error
growth 20 yr after the study of Lorenz (1982), the contribution
of model approximations to error growth needs to be taken more
explicitly into account (Orrell et al., 2001). ECMWF therefore
introduced the stochastic physics scheme (Buizza et al., 1999),
which has later been further considerably refined. Inaccuracies in
the formulations of physical processes in NWP models have also
been accounted for with considerable success by using different
model versions or models in the generation of ensembles (Du
et al., 2003; Doblas-Reyes et al., 2005; Hagedorn et al., 2005;
Garcia-Moya et al., 2007). Weigel et al. (2008) and Weigel and
Bowler (2009) discussed under which conditions multimodel
ensembles can outperform single-model ensembles. Based on
simplified ‘toy models’ they argue that in multimodel combina-
tions in general only can be expected to be better than all the
single-model ensembles if the latter are underdispersed. How-
ever, for normally distributed variables, for example, in the short
range, multimodel combinations may also improve over single-
model, well-calibrated ensembles. The discussions in Hagedorn
et al. (2005) emphasized that reliability and consistency were
strong contributing factors in addition to error compensation for
the success of multimodel ensembles over single-model, and that
these factors could not be replaced by relatively trivial statistical
calibration. Preliminary unpublished results (R. Hagedorn, pers.
comm.) indicate that calibration using reforecasts (Hamill et al.,
2006) may come out better than multimodel combinations of
single-model ensembles with uneven quality, but not when they
are comparable.

The aim of GLAMEPS is to construct a well-calibrated, pan-
European ensemble for short-range NWP by accounting for both
initial state and model inaccuracies. Model uncertainties are
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presently taken into account by using a small number of different
model versions and different models. Initial state uncertainties
are taken into account in two ways. Ensemble perturbations are
imported from a global system, EuroTEPS, based on singular
vectors that maximize total energy in a target domain after 24 h
in addition to the regular Northern Hemispheric singular vectors
(Leutbecher, 2007; Frogner and Iversen, 2011). EuroTEPS also
provides perturbations at the lateral boundaries during the pre-
diction period. Additional initial state perturbations are included
as three different assimilation cycles are run in parallel with dif-
ferent models and model versions, but without perturbing the
observations.

GLAMEPS aims at predicting atmospheric features which
spatial scales are intermediate between the synoptic presently
covered by leading global EPS and the so-called convection-
permitting scales. Whilst GLAMEPS will operate with ap-
proximate pan-European coverage (excluding eastern parts and
Greenland), several LAM-EPS systems presently operate on
these scales for parts of Europe (Marsigli et al., 2005; Frogner
et al., 2006; Garcia-Moya et al., 2007; Hágel and Horányi, 2007;
Bowler et al., 2008; Kann et al., 2009; Aspelien et al., 2011)
and in other parts of the world (Du et al., 1997; Hamill and
Colucci, 1997; Stensrud et al., 1999; Seko et al., 2007); see also
http://www.smr.arpa.emr.it/tiggelam/.

This paper presents results from preparatory experiments for
constructing a first operational version of GLAMEPS. The test
period consists of seven consecutive weeks starting from 17
January 2008, and results are only taken as indications in order
to investigate if full-scale experiments in an operational setting
are recommendable. For a range of standard probabilistic ver-
ification parameters at observational sites, GLAMEPS-results
are compared to results from the operational 51-member EPS
run at ECMWF (EPS51) during the winter period in 2008. The
results are also compared to a few potentially alternative options
for the ensemble system. Thereby the relative contributions to
skill enhancement by GLAMEPS are investigated, including the
multimodel approach, and the targeted singular vectors in Eu-
roTEPS. The experiments also include a first attempt at using
Bayesian model averaging, BMA, (Raftery et al., 2005) to cali-
brate and combine the single-model ensembles.

In Section 2, we present a likely set-up for an operational
GLAMEPS along with a description of the models and tools.
Results of experiments are discussed in Section 3, including
comparisons with EPS51 and investigations of the benefits of
the multimodel approach and the use of EuroTEPS. Section 4
finally presents conclusions and possible developments in the
near future.

2. Constructing GLAMEPS

The basic idea behind GLAMEPS is to account for all major
sources of forecast inaccuracy over the next 2 d by using a
multimodel approach which includes several data-assimilation

cycles, and while EuroTEPS is intended to secure that atmo-
spheric instability on the relevant synoptic scales over Europe
are accounted for. The main challenge for GLAMEPS and other
short-range NWP is to produce significantly better forecasts in
the short range than the best available global forecasts. We there-
fore use the global model EPS from ECMWF as a benchmark.
The next benchmark would be other similar short-range EPS.

It is a considerable practical challenge that systems for short-
range forecasting have to wait for input data from a global system
designed for the medium range for the open lateral boundary
conditions. Only after the coarser resolution data is available,
the finer resolution predictions can be prepared for production.
Hence, the short-range forecasts need to be produced under ex-
cessively strict time constraints, and efficient exploitation of the
computer resources is necessary in order to produce valuable
additions to the global forecasts. Even though these aspects of
exploring short-range predictions are of practical rather than
scientific nature, they are important in the applied science of
weather forecasting, in a similar way as physical parametriza-
tions has been necessary to develop due to limited computer
resources.

2.1. Technical set-up

Figure 1 shows a schematic flow diagram for data and tasks in an
anticipated operational GLAMEPS. The production is launched
and monitored at ECMWF computers by a script system
(http://www.ecmwf.int/products/data/software/sms.html). The
entire GLAMEPS is thus produced at the high-performing com-
puter facility at ECMWF.

The anticipated real-time production chain is presented below
the thick horizontal line in Fig. 1. More details about the single-
model ensemble components and how they are combined are
given in the next sections. EuroTEPS provides global ensemble
members based on the operational EPS51 supplemented with
higher-resolution singular vectors targeted to Europe (Frogner
and Iversen, 2011). Three-hourly data sets at vertical coordinate
levels used in by the ECMWF-IFS (IFS is the integrated forecast
system) are transferred to HIRLAM and ALADIN. A program
code (GL) enables flexible transfer of atmospheric data between
EuroTEPS and ALADIN, while ground surface model data im-
ported to ALADIN from the French global model ARPEGE-IFS
(Courtier et al., 1991; Geleyn et al., 1995). The strategy is to pro-
duce as many as possible of the HirEPS and AladEPS (and even
EuroTEPS) ensemble members by running parallel jobs, thus
saving production time.

AladEPS, HirEPS_S, HirEPS_K and EuroTEPS produce en-
sembles of field data in a common presentation grid with the
same rotated latitude–longitude coordinates as used when inte-
grating HIRLAM. Optionally, BMA can be used to calibrate and
combine all ensemble members, in which case a common proba-
bility density function for each combined and calibrated variable
is constructed. At present stage the software developed by the
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Fig. 1. Flow of data and tasks in an anticipated operational GLAMEPS. See Section 2.1 in the main text for explanations.

Spanish met-service, Hppv, is used to calibrate and combine
with BMA, as well as producing selected probabilistic forecast
graphics. When BMA is not applied, the multimodel ensemble
is simply pooling all ensemble members.

Pre-production preparation shown above the horizontal line
in Fig. 1 includes the calculation of BMA calibration weights
for combining the probability density functions from the single-
model ensembles. This part makes use of observational data
over a pre-defined time-window. In this paper, we have ap-
plied BMA for wind speed at 10 m height with calibration
statistics determined over the previous 3 d. The short pe-
riod is chosen in order to maintain dependency of the actual
weather situation, but since the statistics are evaluated by pool-
ing data from the entire domain, heterogeneity is neglected.
The system uses free available software for this (http://cran.r-
project.org/web/packages/ensembleBMA/index.html).

Post-production evaluation, also shown above the horizontal
line in Fig. 1, is the verification run on a sample of previous fore-
casts and relevant observations over typically a month or longer.
The verification of probabilistic GLAMEPS products is run out-
side the real-time operation, and typically after a minimum set
of cases of ensemble forecasts are ready for comparison with
observations. In an operational setting, full 1-month periods or
longer would be a typical running verification period. A range
of probabilistic verification products are made, including rank
histograms, spread-skill diagrams, reliability and sharpness di-
agrams, Brier skill score (BSS), discretely ranked probability
skill score (DRPSS), relative operating characteristics curves
(ROC) and curves for expected relative value as a function of
cost-loss ratio. Skill scores are evaluated by relating to forecasts
that could be produced by the statistics over the sampling period
(‘sample climatology’). Hppv is presently scheduled for both
producing graphical output and for verification.

For the experiments developed for this paper no production
was made in real time. They were performed by launching

and monitoring the elements in Fig. 1 separately in sequence.
This version of GLAMEPS is referred to as GLAMEPS_v0.
Since March 2010 an automatic operational test production
(GLAMEPS_v1) has been running twice per day at ECMWF,
but with EuroTEPS replaced by selected ensemble members
from EPS51. The replacement is preliminary until EuroTEPS
is upgraded with ensemble data assimilation (EDA) and higher
resolution as already in EPS51 (Buizza et al., 2008).

2.2. EuroTEPS

EuroTEPS (Frogner and Iversen, 2011) is a version of the
ECMWF IFS EPS for which additional ensemble spread for
the first 24 h are sought over Europe by using singular vectors
targeted to three overlapping target areas that together cover ma-
jor parts of Europe. The targets ensure pan-European ensemble
spread with fewer ensemble members than EPS51, and Fig. 1
in Frogner and Iversen (2011) shows a map of the targets which
cover the northern, middle and southern parts of Europe, respec-
tively. The targeted SVs (TSVs) are calculated with resolution
T159L62 and are by construction orthogonal, with respect to the
Total Energy (TE) inner product, to the regular T42L62 Northern
Hemispheric SVs optimized over 48 h and used operationally
to produce EPS51 (Leutbecher, 2007). Ten TSVs are calculated
per target area, and the 30 TSVs are afterwards mutually or-
thogonalized. Both initial and evolved TSVs and NH SVs are
combined to construct a set of unique initial perturbations by the
same type of Gaussian sampling as used for EPS51 (Leutbecher
and Palmer, 2008).

For the experiments in this paper, EuroTEPS has been set up
to produce a control prediction from the T799L91 deterministic
operational analysis taken out with resolution T399L62. The
alternative ensemble members are produced in parallel mode
using ECMWF IFS (cycle 35r2) with resolution T159L62 for
TSVs and T399L62 for the ensemble generation. Three-hourly
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data suitable for input to the HIRLAM and ALADIN limited area
models are provided. Furthermore, additional EuroTEPS data for
provided separately for combination with ensemble members
from the ALADIN and HIRLAM.

2.3. AladEPS and HirEPS

Figure 2 shows the present integration domains and the com-
mon domain for GLAMEPS output. The ALADIN model
(ALADIN International Team, 1997) is used to downscale (with-
out data-assimilation) the EuroTEPS atmospheric control and
ensemble members after interpolation. The surface fields are
taken from the ARPEGE IFS (Courtier et al., 1991; Geleyn et al.,
1995), since the surface model in ALADIN, ISBA (Interaction
Soil–Biosphere–Atmosphere, Noilhan and Planton, 1989), is in-
compatible with the scheme used with the ECMWF IFS models.
The version of ALADIN used for the GLAMEPS experiments
presented in this paper is cycle 31t1. ALADIN is a spectral lim-
ited area model (Haugen and Machenhauer, 1993) and is run with
hydrostatic semi-Lagrangian dynamics. To counteract the peri-
odicity of the basis functions used with the spectral technique,
artificial damping is applied in a horizontal extension zone. The
model employs 37 hybrid-coordinate, terrain-following levels in
the vertical direction.

The parametrization of turbulent diffusion is a diagnos-
tic 1st order closure scheme (Louis et al., 1981). Deep con-
vection is parametrized by the diagnostic mass flux scheme
of Bougeault (1985) and Bougeault and Geleyn (1989). The

Fig. 2. Integration areas for the limited-area models used in
GLAMEPS. Outer area: output domain for data from EuroTEPS in
model levels; Medium area: ALADIN domain with extension zones;
Inner area: HIRLAM domain and output domain for common products.

cloud microphysics includes five phases of the water sub-
stance, and the radiation scheme, which is the same as used
in ECMWF IFS, is called once per hour. The solution of im-
porting coarse-resolution ground surface data for ISBA is pre-
liminary until a surface data-assimilation will be introduced to-
gether with a new surface soil scheme. First results with the
latter indicate improvements compared to importing data from
ARPEGE. Further description of ALADIN can be found in
http://www.cnrm.meteo.fr/aladin/spip.php?article129.

The HIRLAM model (see http://Hirlam.org) is version 7.2
revision r6270; see Yang (2008). The model employs 40 levels
in the vertical and is set up to run with two different choices for
the cloud physics parametrization. HirEPS_S employs the strat-
iform and convective cloud and precipitation scheme STRACO
(Sass et al., 1999; Undén et al., 2002), while HirEPS_K uses
the Kain-Fritsch schemes for deep cumulus (Kain and Fritsch,
1990; Kain, 2004; Calvo, 2007) and Rasch and Kristjans-
son (1998) for stratiform clouds and precipitation (Ivarsson,
2007).

A prognostic scheme for turbulent kinetic energy is employed.
For the ground surface a tile approach is used for 7 surface
types together with the two-layer force-restore ISBA scheme
(Noilhan and Planton, 1989). Each model version produces a
separate control run starting at 00 and 12 UTC from analy-
ses produced by two independent 6-hourly 3DVar assimilation
cycles (Gustafsson et al., 2001; Lindskog et al., 2001). Twice
the number of ensemble members from EuroTEPS is thus pro-
duced by HirEPS. Ensemble perturbations for the initial state
and lateral and lower boundary data are taken from EuroTEPS.
Visit http://hirlam.org/index.php?option=com_content&view=
category&layout=blog&id=36&Itemid=99 for further infor-
mation about HIRLAM.

2.4. The GLAMEPS ensemble: combination
and calibration

EuroTEPS is designed to produce one control forecast and an
even number of alternative ensemble members. In this paper we
have used 10, 12 and 50 for the different experiments discussed
in the next sections. When combined into GLAMEPS, either by
pooling together the ensemble members or by using BMA, also
the two HirEPS versions and AladEPS are run for one control
plus the same even number of ensemble members as produced
by EuroTEPS. The AladEPS control forecast is a downscaled
version of the EuroTEPS control, while the two HirEPS control
forecasts starts from analyses produced with two different 3DVar
assimilation cycles.

Initial state uncertainty is thus accounted for in GLAMEPS
partly by the three different analyses and partly by the singu-
lar vectors used in EuroTEPS. Model uncertainty is accounted
for partly by running four different models and partly by the
stochastic physics used in EuroTEPS, which is the same as
used in the operational EPS at ECMWF (Buizza et al., 1999).
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Uncertainties entering the integration domains of the limited
area models laterally are accounted for by EuroTEPS. Uncer-
tainties originating from the ground surface are mainly taken
into account by the different surface parametrizations in the
models. In addition, AladEPS import surface input data from
ARPEGE while HirEPS use EuroTEPS data. The uncertainty in
surface data is probably the weakest part of the construction of
GLAMEPS at present.

The ensemble members from the different models are com-
bined into a unified probabilistic prediction. The combination
can be done using BMA, which also enforce calibration with
respect to reliability and the spread-skill relation (Raftery et al.,
2005). Here we have made a few tests with BMA for wind speed
at 10 m height with coefficients determined over the most re-
cent 3 d prior to the present. Each single-model ensemble is
bias-corrected before combination. In principle separate BMA
weights should be estimated for each observation site or for sites
with comparable climate statistics. Much longer calibration peri-
ods are then necessary for statistical significance, at the expense
of flow dependency. In any case, applying BMA to extreme (and
rare) weather events will be difficult due to problems with sta-
tistical confidence. If BMA is not applied, which so far is the
normal situation, the single-model ensembles are combined by
pooling together the single-model ensemble members without
any corrections.

3. Configuration experiments

This paper presents and discusses a few experiments for differ-
ent options of GLAMEPS in order to guide the set-up for full
operational production. Table 1 gives a short overview of the
experiments which are named EXP_0.1, EXP_0.2, EXP_0.3,

EXP_0.4, where the zero refers to version 0 of GLAMEPS. In
addition results from the global ensemble system with 51 mem-
bers (EPS51), which was operational at ECMWF during the
7-week period, are used as reference benchmark. The experi-
ments with GLAMEPS_v0 are set-up using the model versions
and model domains described in Section 2. The forecast length
is 42 h and the grid-resolution 0.115◦ (∼12.8 km) for HirEPS,
and 12.9 km (∼0.1161◦) for AladEPS. For EuroTEPS the reso-
lution is T399L62 (∼55 km). All experiments are performed by
running the links in the chain (Fig. 1) manually in sequence. We
have made the experiments over 7 weeks twice per day during
winter 2008 [17 January–5 March (00UTC and 12UTC)], except
for EXP_0.3 which is run over the first four of the weeks.

In short, the comparison between EXP_0.1 and EXP_0.2 is
done to measure the difference between, respectively, 44 and
52 ensemble members in GLAMEPS. The difference between
EXP_0.2 and EXP_0.3 (calculated over 4 weeks only) diagnoses
the value added by using targeted singular vectors in EuroTEPS
compared to using ensemble members from EPS51. Finally, the
multimodel approach in GLAMEPS is discussed based on dif-
ferences between the multimodel GLAMEPS in EXP_0.2 and
a range of single-model ensembles of same size in EXP_0.4.
The test periods include several potentially high-impact weather
events in Europe, but they are too few to yield statistically sig-
nificant verification.

3.1. Probabilistic verification and reference predictions

Below we have chosen to mainly show verification results for
42 h predictions, except for some parameters for which time
development is shown over the forecast range, and for precip-
itation where amounts accumulated from +18 to +24 h are

Table 1. Overview of the four calibration experiments. EXP_0.4 produces four different ensembles of the same size, three of which are with a
limited area model

Total no. of ensemble members Global input LAM-EPS Test period Purpose

EXP_0.1 Multimodel 44 members EuroTEPS_11 HirEPS-K_11 17 January–05 March Sensitivity to
HirEPS-S_11 ensemble size
AladEPS_11

EXP_0.2 Multimodel 52 members EuroTEPS_13 HirEPS-K_13 17 January–05 March Control
HirEPS-S_13
AladEPS_13

EXP_0.3 Multimodel 52 members EPS51, members 1–12 HirEPS-K_13 17 January–13 February Sensitivity to
HirEPS-S_13 EuroTEPS
AladEPS_13

EXP_0.4 4 alternatives, 51 members EuroTEPS_51 HirEPS-K_51 17 January–05 March Multi- vs.
HirEPS-S_51 Single- model
AladEPS_51 eps
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shown, since the number of observations is considerably smaller
at longer lead times. European-wide synoptic surface observa-
tions and radiosondes are used in the verification.

Results are shown for a range of probabilistic prediction
scores for selected variables and events. The amount of ob-
servation data is considered sufficient for statistically confident
conclusions to be drawn for frequently occurring weather events,
even though generalizations to other seasons are not recom-
mended. In addition to basing our conclusions on a single winter
period, we also pool data from different subregions across vari-
ous climate regimes together. Ideally all the statistics presented
should be made for each observation site or for subregions in Eu-
rope with quasi-homogeneous climate statistics (Hamill, 2001).
Examples also include events of relatively high wind speeds and
precipitation amounts that still occur regularly over 7 weeks in
winter in coastal and mountainous areas in Europe. These exam-
ples should only be taken as indications of the forecast quality
of potentially high impact weather.

In any case, fully robust conclusions of the systems’ proper-
ties relative to each other need longer experiment periods to ac-
count for seasonal and interannual variability in European flow
patterns. This is in particular important for extreme weather
events. Nevertheless, the 7 weeks in winter 2008 experienced
considerable flow variations, starting with a very high index
for the North-Atlantic Oscillation (Osborn, 2006), which re-

duced during February and switched to a large negative value in
March (http://www.cru.uea.ac.uk/∼timo/datapages/naoi.htm).
The Scandinavian pattern, which is closely linked to
patterns of precipitation variations in north-west Europe
(Barnston and Livezey, 1987), changed from negative to positive
over the same period (http://www.cpc.noaa.gov/data/teledoc/
scand.timeseries.gif).

We include score parameters that measure consistency be-
tween ensemble spread and prediction skill, reliability of pre-
dicted probabilities, predicted ensemble resolution and the
potential value of the predictions for users that may take de-
cisions influenced by the weather forecasts. Also the brier skill
score (BSS), the discrete ranked probability skill score (DPRSS)
and relative operating characteristics (ROC) curves are evalu-
ated. Reference predictions used in skill scores and the climatic
occurrence of events shown in reliability diagrams are all from
the 7-week sample statistics. The reference is the same for all
forecasts that are verified.

3.2. GLAMEPS_v0 compared to operational
ECMWF EPS

First we concentrate our discussions results from EXP_0.1 (44
members) and EXP_0.2 (52 members) compared to EPS51.
Figure 3 shows rank histograms (Talagrand diagrams) for the 7

Fig. 3. Rank histograms for +42 h predicted mean sea level pressure (a), 2 m temperature (b), 10 m wind speed (c) and +18 to +24 h predicted
6-hourly precipitation (d). Thick lines: continuous: 52-member GLAMEPS (EXP_0.2); dotted: 51 member operational EPS; dashed: 44-member
GLAMEPS (EXP_0.1). Thin lines in (c) are BMA-calibrated wind speed for EXP_0.2 (continuous) and EXP_0.1 (dotted).
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winter weeks. The figures confirm a tendency of underspread in
all the ensembles, even though some underspread should be ex-
pected when observation inaccuracy is not explicitly accounted
for (Hamill, 2001; Saetra et al., 2004; Bowler, 2008). The un-
derspread is reduced in the GLAMEPS experiments compared
to EPS51, but the difference between EXP_0.1 and EXP_0.2
is negligible. For precipitation (Fig. 3d) there is a slight bias
towards higher ranks, which is larger for GLAMEPS than for
EPS. This is probably associated with too few occurrences of
no precipitation in the models, but it is also likely that high
precipitation amounts are overestimated.

The BMA applied to the 10 m wind speed is seen to inflate the
ensemble spread so that observations, which were ranked outside
the range of the ensemble members, become ranked amongst the
lower, respectively higher, ensemble members. Even though the
overall ensemble reliability will increase due to this (see Fig. 4a),

the result is that too many observations are ranked in the extreme
parts. The reliability plot for 10 m wind speed exceeding 10 m s−1

in Fig. 4a show considerably better results for GLAMEPS than
EPS51 even though both are overconfident, that is, the probabil-
ities of the events are overpredicted. The results for EPS51 are
close to the line of no skill. The figure clearly demonstrates that
BMA considerably improves the overall reliability, except for
probabilities lower than ∼50% which are underpredicted. The
corresponding sharpness diagram (not shown) shows a slightly
reduced sharpness for this predicted event after BMA.

Figure 4 also shows examples of reliability diagrams for event
thresholds for screen temperatures (2 m above ground). In both
cases GLAMEPS is better than EPS51. For the frequently oc-
curring event of T2m > −10 ◦C (∼98% of the sample), the
improvement is seen for predicted probabilities lower than 50%,
whilst for the quite rarely occurring event of T2m > 10 ◦C

Fig. 4. Reliability diagrams, i.e. the conditional frequency p′ of observed events with predicted probabilities p. Thick lines: 52 member GLAMEPS
(EXP0.2, continuous); 51 member operational EPS (dotted), 44 member GLAMEPS (EXP_0.1, dashed). Events: +42 h predicted wind speed >10
ms−1 (a); +42 h predicted 2 m temperature > –10 ◦C (b); >10 ◦C (c); and +18 to +24 h predicted 6-hourly accumulated precipitation >1 mm (d).
Thin lines in (a): BMA calibrated wind speeds EXP_02 (continuous) and EXP_0.1 (dashed). The diagonal is perfect reliability; the half diagonal is
zero brier skill score (no skill), horizontal and vertical lines is the observed frequency over the period (no resolution).
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(∼18% of the sample), the improvement occurs for predicted
probabilities higher than 70%. This indicates that GLAMEPS is
better than EPS51 at reproducing considerable deviations from
the sample average. The two GLAMEPS options, 44 members
and 52 members, are indistinguishable in these plots.

The bias noticed for precipitation amounts in Fig. 3d can
also be seen in the reliability diagrams for precipitation events
(Fig. 4d). The overconfident predictions are larger for small
precipitation amounts, and particularly large for GLAMEPS. For
predicted probabilities over 70% GLAMEPS is clearly better, but
still quite close to the line of no skill.

Figure 5 shows BSS for selected events associated with 2 m
temperature, 10 m wind speed and 6 h accumulated precipitation,

and Fig. 6 shows DRPSS over a range of event thresholds for
2 m temperature and 10 m wind speed. DRPSS is a measure of
BSS integrated over many events and is as such a more robust
measure of the overall probabilistic forecast quality of a system
than BSS. On the other hand, DRPSS may mask information
about less frequent events that can be of importance for users.
We therefore include some BSS diagrams in addition to DRPSS.

All the figures show that GLAMEPS provides considerably
improved probabilistic predictions compared to EPS51, and that
the differences between the 44 member EXP_0.1 and the 52
member EXP_0.2 appear to be almost negligible (the blue curves
appear to be missing in Fig. 6 because they are hidden by the
red). Slight differences can be seen for precipitation (Figs 5e

Fig. 5. Brier Skill Score (BSS) for 52 member GLAMEPS (EXP_0.2, continuous), 51 member operational EPS (dotted) and 44 member GLAMEPS
(EXP_0.1. dashed) for predicted probabilities of the events: 2 m temperature > –10 ◦C (a), >10 ◦C (b), 10 m wind speed >5 ms−1 (c), >10 ms−1

(d); 6-hourly precipitation >1 mm (e), >5 mm (f). BSS for BMA-calibrated wind-speed is shown in (c) and (d) as thin lines with markers.
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and f), and in favour of the higher number of ensemble mem-
bers for the more extreme event. Calibration by BMA increases
BSS for wind speed considerably for the most frequent event
(>5 m s−1), but less for the more extreme (>10 m/s). DPRSS is
also increased after BMA, clearly by increasing reliability with
negligible change in ensemble resolution.

The main contributor to increased DRPSS of GLAMEPS rel-
ative to EPS51 (Fig. 6) appears to be the predicted ensemble
resolution, but the reliability of the predicted probabilities is
also considerably larger. The same can be said for BSS of the
chosen events (not shown). Predictions of the frequently oc-
curring (98%) event T2m >−10 ◦C have a considerably lower
BSS than predictions of the rare (18%) event T2m >10 ◦C. For
EPS51 both ensemble resolution and reliability are considerably
smaller for the frequent event, whilst for GLAMEPS the smaller
BSS is mainly due to reduced ensemble resolution with a smaller
reduction in reliability (not shown). This indicates that it is dif-
ficult to add essential information relative to relevant reference
predictions (sample climate data) for such very frequent events
without a considerably improved modelling of local effects at
observation sites, such as complex topography, radiation and
cloudiness and turbulence in the planetary boundary layer. In
fact, the challenge is to accurately predict the complementary
event T2m < −10 ◦C which only occurs about 2% of the time
on observation sites during the 7 weeks.

Figure 7 shows the estimated value of the ensembles for de-
cision making for users with different ratios between protection
costs and damage loss associated with predicted events for 2 m
temperature, 10 m wind speed and 6 hourly accumulated precipi-
tation amounts. The events are amongst those analysed with BSS
in Fig. 5. Also shown are curves for relative operating character-
istics (ROC), that is, the hit rate as a function of the false alarm
rate for the same events and forecast lead times. Also in this case,
the GLAMEPS experimental ensembles yield consistently better
scores than the EPS51. In most cases the improvement in ROC

are due to higher hit rates obtained with only minor changes
in false alarm rates. The value of the GLAMEPS forecasts ap-
pears better for all users. The difference between EXP_0.1 and
EXP_0.2 is very small. BMA calibration also produce a slight
improvement in ROC for 10 m wind speed accompanied with
a small increase in expected value for large costs for protection
relative to loss when the event occurs. However, since a user
with a high cost-loss ratio would have very little tolerance for
false alarms, this small increase in value is negligible in practice.

An important reason for using ensembles to predict probabil-
ities of weather events is to improve the ability to predict high
impact weather. Provided that nature and society is adapted to
recurrent weather events, high impact weather should be rare.
One may ask if it is possible at all to properly verify probabilistic
forecasts of truly rare events. For example, even though there
were a few weather events with strong winds and large precipita-
tion amounts in Europe during the 7 weeks, they were too few to
obtain stable probabilistic score measures. However, the thresh-
olds we have chosen to show in Fig. 8 as an indication, are not
particularly extreme for a normal winter in Europe; and 200–300
cases (a few per thousand in frequency) were observed over the
7 weeks at the chosen sites. Even though this is too few to obtain
confident estimates of the reliability over a range of forecasted
probability thresholds, stable differences in the overall BSS can
be seen.

The two examples in Fig. 8 are shown in order to detect
effects of the larger ensemble size in EXP_0.2 compared to
EXP_0.1. Figure 8 shows BSS for 10 m wind speed exceeding
20 m s−1 (a) and 6 hourly accumulated precipitation exceeding
10 mm (b). The BSS indicates only slight improvement com-
pared to sample climatology. Even though conclusions need to
be confirmed for much larger samples, the figure shows higher
BSS for GLAMEPS than for EPS51, while the 52-member en-
semble (EXP_0.2) has slightly higher values than the ensem-
ble with 44 members (EXP_0.1). Since forecasting high-impact

Fig. 6. Discrete rank probability skill score, DRPSS, (continuous lines with bullets) for 52 member GLAMEPS (EXP_0.2, blue), 51 member
operational EPS (green) and 44 member GLAMEPS (EXP_0.1, red), of 2 m temperature (a) and 10 m wind speed (b). DPRSS for BMA-calibrated
10 m wind speed are turquoise (EXP_0.2) and brown (EXP_0.1). Events are for 2 m temperature > −10, −5, 0, 5, 10, 15, 20, 25, 30 ◦C and for 10
m wind speed >3, 5, 10, 15, 20, 25, 30 ms−1. Contribution from resolution (continuous) and reliability (dashed), defined so that DPRSS = 1 –
DPRSS(reliability) – DPRSS(resolution).
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Fig. 7. Expected relative value (panels a, b, c) and relative operating characteristics (ROC) curves (panels d, e, f), for decisions based on predicted
probabilities of events. Lines shown for 52 member GLAMEPS (EXP_0.2, blue), 51 member operational EPS (green) and 44 member GLAMEPS
(EXP_0.1, red). BMA-calibrated forecasts of wind speed are shown for EXP_0.2 (turquoise) and EXP_0.1 (brown). The events are: +42 h predicted
2 m temperature >10 ◦C (a, d), 10 m wind speed >10 ms−1 (b, d); and +18 h to +24 h predicted 6-hourly precipitation >5 mm (c, f).

Fig. 8. Brier Skill Score (BSS) for +12 h to +42 h predicted probabilities of two rare events: 10 m wind speed >20 ms−1 (a) and 6 h precipitation
>10 mm (b). Thick lines show EXP_0.2 (continuous), EPS51 (dotted), EXP_0.1 (dashed); thin lines for wind speed (left) indicate effects of BMA
calibration for EXP_0.2 and EXP_0.1.

weather is an important purpose for GLAMEPS, the 52 mem-
ber GLAMEPS is chosen for the first version even though the
improvement is very small.

We already saw from Fig. 5c and d that improvements by
BMA calibration were smaller for the more extreme event in
Fig. 5d. It is therefore interesting to see that for the even more
extreme case in Fig. 8a, BMA calibration destroys the skill
of GLAMEPS beyond the first 12 h of the forecast. This can
be a consequence of calibrating the BMA coefficients based

on a common statistics for the entire area, thus neglecting the
fact that statistical properties for upper quantiles are particularly
heterogeneous. The BMA will then be dominated by the average
pan-European climate and mask the statistics for strong winds.
An alternative option is to estimate BMA coefficients over a
longer period of time which may enable segregated statistics for
subregions, but then the temporal flow dependence will be lost.
Since extreme weather is the main purpose of GLAMEPS, we
have decided to abandon BMA calibration in the present form.
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This is also why we have so far neither run BMA calibration
for other variables, nor for EPS51 as a fair comparison with
BMA-calibrated GLAMEPS.

3.3. Multimodel versus single-model ensembles

As an example for illustration, Fig. 9 shows forecasted ensemble
plumes for a coastal site in the northwestern Netherlands for a
case of a storm with gale-force winds and heavy precipitation.
In the morning of March 1 a storm developed over the North Sea
with maximum northwesterly winds analysed around 25 m s−1.
At the Dutch site De Kooy in Fig. 9, the wind speed reached
15 m s−1 and the precipitation persisted with more than 7 mm
per 6 h over many hours.

For precipitation, it is clear from these figures that the ensem-
ble spread in GLAMEPS EXP_0.2 is larger than for EPS51, and
that the observed values are clearly better encompassed by the
ensemble in EXP_0.2 than for EPS51. While EPS51 overesti-
mates the observed precipitation amounts, GLAMEPS include
many ensemble members that do not. Many EuroTEPS members
still overestimate, but this is compensated by most of the LAM
ensemble members, which mostly underestimate. Hence, in the
case of precipitation, compensating systematic errors appears to
be important.

For the forecasted wind speed the improvement in the com-
bined ensemble is due to EuroTEPS being better than EPS51,
and that extra spread is provided by some of the LAM ensemble
members. Most GLAMEPS ensemble members overestimate the

Fig. 9. EPS-meteograms for the site 06235 De Kooy in the north-western coast of The Netherlands for an extreme weather case. The dates on the
x-axes start on 29 February 2008 00UTC and end 42 h later, with 6 h between tick marks. Grey curves in the two uppermost diagrams are from the
operational EPS51 and multicoloured curves in the two lowermost are from the different model components of GLAMEPS EXP_0.2. Black curves
with markers are observations. In each case, the upper curves show predicted accumulated precipitation for each ensemble member and the lower
show wind speed at 10 m height.
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observed wind-speed but to a smaller extent than those of EPS51.
It should be borne in mind in this context that for a well perform-
ing ensemble, observations should occur with equal frequency
over the variable intervals implied by the ensemble members.
This property is diagnosed with rank histograms. Figure 9 can
be taken to indicate that using several models in the ensemble
generation may, at least occasionally, improve the predictive per-
formance by adding spread and thus increase reliability, and by
compensation of flow-dependent systematic errors.

In this section we want to further investigate if the multi-
model ensemble of GLAMEPS adds predictive skill compared
to single-model ensembles. In this context we consider single-
model ensembles of similar size as the multimodel, and not the
small single-model ensembles that are combined in GLAMEPS.
Separate experiments are made for the 7-week winter period in
2008, for which each of the three different single-model LAM-
EPS have been rerun with 51 ensemble members. To prepare
for this, EuroTEPS was run to produce 50 alternative ensem-
ble members as input to, respectively, AladEPS, HirEPS_S and
HirEPS_K in addition to each model’s control forecast.

Figure 10 shows DRPSS for the three 51 member AladEPS,
HirEPS_S and HirEPS_K, respectively compared to the 52
member GLAMEPS (EXP_0.2). In all cases, the multimodel
GLAMEPS gives better scores than any of the single-model en-
sembles of the same size, and the improvement is particularly
evident for the ensemble resolution component (thin continuous
lines in the upper parts of the diagrams). The reliability is also
generally better for GLAMEPS, but the increased ensemble reso-
lution is particularly encouraging, since this a non-trivial benefit
that cannot be achieved by statistical calibration methods.

For wind speed at 10 m height the improvement of the multi-
model GLAMEPS, as measured by DPRSS, is modest compared
to AladEPS. For forecast lead time +36 h and for BSS for a cer-
tain event thresholds (not shown) AladEPS is even slightly better.
Figure 10 clearly shows that the two 51-member HirEPS ensem-
bles are of lower quality than the one 51-member AladEPS.
It is possible that this is due to bias errors for wind speed
in HIRLAM (e.g. de Bruijn and van Meijgaard, 2005; Yang,
2007), for which low wind speeds tend to be overestimated and
high wind speeds underestimated. Over rough topography the
underestimates dominate. It should be borne in mind that the
verification presented here is obtained as statistics for observa-
tion sites directly, and may not represent the model quality in
data-sparse areas.

The point to be made here is that an uneven quality between
the models may undermine the potential quality enhancement of
the multimodel ensemble combinations. As discussed in connec-
tion with Figs 5 and 6, combining and calibrating the ensembles
with BMA, which reduces systematic errors at observation sites,
increases DRPSS for the GLAMEPS ensemble. However, as in-
dicated from Fig. 8, calibration statistics, which is both flow
dependent and accounts for heterogeneous climatology, is not
trivially obtained. On the other hand, fully flow-dependent bias-

Fig. 10. Discrete rank probability skill score, DRPSS, (continuous
lines with bullets) for 52 member EXP_0.2 (blue), 51 member AladEPS
(green), 51 member HirEPS_K (red) and 51 member HirEPS_S
(turquoise). Events include 2 m temperature > −10, −5, 0, 5, 10, 15,
20, 25, 30 ◦C (a), 10 m wind speed >3, 5, 10, 15, 20, 25 and 30 ms−1

(b) and precipitation >0.1, 1, 2, 5, 10, 15, 20, 25 mm over 6 h (c).
Contributions from resolution and reliability are as in Fig. 6.

free and well-calibrated single-model ensembles would have
little complementary information to contribute when combined
into a multimodel ensemble.

There are also uneven quality between the models for other
variables and events. For temperature at 2 m height AladEPS has
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consistently lower reliability and smaller DPRSS. One reason
may be that AladEPS does not use a control from its own anal-
ysis but is a downscaling of the coarse-resolution EuroTEPS.
Thus, small-scale features, which in particular influence 2 m
temperature in complex topography, are less well represented in
AladEPS than in HirEPS. In this case, however, there are twice
as many ensemble members with better quality in GLAMEPS,
and the combination is clearly better than the best single-model
ensemble. For 6-hourly accumulated precipitation the difference
in quality is considerably smaller, even though the single-model
AladEPS has higher DPRSS for lead-times +30 to +42 h. In
this case, the single-model AladEPS has considerably better en-
semble resolution (sharpness) than both the HirEPS ensembles,
similar to the multimodel GLAMEPS combination. However,
the improved ensemble resolution is combined with a reduced
reliability for AladEPS. Hence GLAMEPS has higher DRPSS
for all lead-times.

A tentative conclusion is that a multimodel GLAMEPS is
generally better than a single-model ensemble, even if there
are cases when uneven qualities between the models render the
improvement by combination small. The multimodel improve-
ment is particularly seen in ensemble resolution. Nevertheless,
an advanced calibration (Hamill et al., 2006) of a high-quality
single-model ensemble may be a more cost-efficient solution
even though the ensemble resolution improvement will be lost.
Such calibration should then be performed using reforecasts
over several years and seasons which requires huge computer
resources and man-power. For the present situation, multimodel
GLAMEPS is better suited when evaluated over a range of vari-
ables and events. But maintaining and running several models
of state-of-the-art quality also takes huge resources.

3.4. EuroTEPS versus regular EPS

Running EuroTEPS takes considerable computer resources and
human resources for maintenance. The cost will become particu-
larly large when upgraded with higher spatial resolution. These
resources may provide larger benefits for GLAMEPS if used
differently. If the same number of ensemble members is taken
from the operational EPS (EPS51), the computer resources used
to produce EuroTEPS can in stead be used on AladEPS and
HirEPS. For the model versions used for GLAMEPS EXP_0.2,
EuroTEPS takes considerably less computer resources than the
limited area model EPS production. Hence, since reducing the
horizontal grid-mesh width with a factor x implies an increased
computer requirement of at least a factor x3, only a very small
resolution increase can be obtained in this case. In stead, the
released resources could be used for longer forecasts or an in-
creased number of ensemble members.

Here, we simply investigate the consequence of replacing the
13 member EuroTEPS used in GLAMEPS EXP_0.2 with the
control and the first 12 (= 6 pairs) alternative ensemble mem-
bers from EPS51. Choosing the first 12 or any other 6 pairs of

ensemble members from EPS51 is not expected to yield system-
atic differences, since each pair is constructed from Gaussian
sampling of development coefficients for the singular vectors.
The comparison is only made over the first 4 weeks of the test
period, that is, from 17 January to 13 February 2008.

Figure 11 shows the DPRSS for the same events and variables
as shown in Fig. 10. There is a consistent but small improve-
ment of using EuroTEPS, and the improvement stems predom-
inantly from a slightly better ensemble resolution. The BSS
shown for selected event thresholds in Fig. 12 confirms the
results. Whether this improvement is worth the computational
cost is not fully evaluated yet, because EuroTEPS and EPS51
are under considerable upgrade both with respect to spatial res-
olution and methods (EDA). Further experiments will therefore
be made with the new system, for which the computational gain
of abandoning EuroTEPS will be much larger. At the same time,
running a dedicated EuroTEPS also enables more possibilities
for GLAMEPS which is yet to be exploited. This includes using
diabatic targeted singular vectors and forcing singular vectors
(Barkmeijer et al., 2003). The benefits of such extensions should
be included in further tests.

4. Conclusions and prospects

Based on the experiments over a 7-week period in winter 2008
the GLAMEPS ensembles of 44 ensemble members (EXP_0.1)
and 52 ensemble members (EXP_0.2) are both improvements
relative to the operational ECMWF 51 member EPS. In spite of
the relatively limited data basis, the improvement seems consid-
erable and consistent. The results provide substantial confidence
in the potentials of GLAMEPS for pan-European, short-range
probabilistic weather forecasting, and there are solid grounds
for pursuing the development of a first operational GLAMEPS.

At the same time, even though sufficient evidence is provided
for developing the potentials of the system operationally, the
results should not be interpreted too general. In particular, results
may be different for other seasons and for other winters, even
though there were considerable flow regime changes in Europe
during the winter in 2008. Finally, a common evaluation is made
for all available observations across Europe during the 7 weeks.
The evaluation may mask regional differences and temporal
variations. Hence, the evaluation needs to be followed up and
confirmed over much longer periods, and this can in practice be
done in an operational setting. The preliminary positive results
encourage the follow-up with such a long-term evaluation.

Three main aspects of GLAMEPS are believed to contribute
to the improvement seen in the preliminary evaluation: the fac-
tor four (approximately) increase in horizontal resolution, the
use of several models and assimilation cycles, and the impact
of employing targeted perturbations in EuroTEPS. We have in-
vestigated the two latter aspects explicitly, and find that whilst
the positive contribution of EuroTEPS is consistent but mod-
est, the multimodel aspect is crucial. One exception is seen for
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Fig. 11. Discrete rank probability skill score, DRPSS, (continuous
lines with bullets) for 52 member GLAMEPS with 13 member
EuroTEPS (EXP_0.2, blue) and with 13 selected ensemble members
from the operational EPS (EXP_0.3, green). Event thresholds are as in
Fig. 10 for 2 m temperature (a), 10 m wind speed (b) and 6 h
accumulated precipitation (c). Contributions from resolution and
reliability are as in Fig. 6.

wind speed forecasts when one of the single-model ensembles
of the same size is considerably better than the others. In this
case the multimodel ensemble is only slightly better than the
best single-model ensemble, and this indicates that proper ad-

Fig. 12. Brier Skill Score (BSS) for GLAMEPS with EuroTEPS
(EXP_0.2, continuous) and with members from the operational EPS
(EXP_0.3, dotted) for events: 2 m temperature > −10 ◦C (a); 10 m
wind speed >5 ms−1 (b); 6 h accumulated precipitation >5 mm (c).

vanced calibration of the single-model forecasts may enhance
the multimodel performance. This was also preliminary con-
firmed when applying BMA on these forecasts, thus improving
reliability with no change of ensemble resolution.

The positive impact of the multimodel approach on the fore-
cast quality confirms the experience of Hagedorn et al. (2005)
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and Doblas-Reyes et al. (2005) who combined several single-
model ensembles into a multimodel ensemble for seasonal pre-
diction. In this case statistical calibration was seen to enhance
the quality of single-model ensembles more than multimodel
ensembles, since the latter was more reliable already before cal-
ibration. Still the multimodel ensemble performed better than the
calibrated single-model ensembles, and increased reliability by
calibration was predominantly achieved by inflated variability
and thus reduced ensemble resolution.

We have not applied calibration to the single-model ensem-
bles in our case, and we cannot claim that the statements of
Hagedorn et al. (2005) and Doblas-Reyes et al. (2005) are valid
in our case. Nevertheless, we have seen that single-model en-
sembles of the same size as the multimodel ensemble perform
consistently worse. The reliability of the multimodel ensemble
is better, but more importantly, the ensemble resolution is im-
proved relative to the single-model ensembles. This means that,
although the combination of models accounts for model uncer-
tainty in a rather arbitrary way, their combination into a multi-
model ensemble contributes qualities that cannot be obtained by
statistical calibration. Calibration can increase reliability but of-
ten at the expense of resolution. We have also seen, however, that
for cases when the single-model ensembles are of considerably
different quality, the multimodel combination of same ensemble
size may not be able to perform better than the best member.

The first improvements of GLAMEPS compared to the ver-
sion investigated in this paper are already underway. This con-
cerns the upgrading of EuroTEPS in line with the upgrade of
the operational EPS at ECMWF, and includes increased spatial
resolution and the use of ensemble data assimilation (EDA).
The basic development work for the latter is already done, and a
version of the upgraded EuroTEPS will probably start in experi-
mental production mode in the autumn of 2010. At the same time
(and starting before), further tests of the benefits of EuroTEPS
will be made, including even higher resolution.

We will also further investigate ways of improving the ap-
plication of BMA (e.g. Johnson and Swinbank, 2009) or other
ways of combining and calibrating the ensembles. Even though
the improvement we obtained for the BMA calibrated ensemble
for wind speed is encouraging, we also saw a need for calibra-
tion statistics that depend on the actual atmospheric state in any
geographical position. This is particularly evident for extreme
weather since the definition of rare events is geographically
highly variable. Elaborated techniques may thus be developed to
obtain calibration coefficients with statistical confidence for fre-
quent events, while for rare and potentially high-impact weather
events this is hard to obtain. Another further complicating aspect
for calibration (as well as evaluation), is the uneven distribution
of observations. Over oceans, in rough terrain, and in the Arctic,
where high-impact weather probably is more prevalent than aver-
age, observations are often sparse. Therefore, technique of using
data from reforecasts over several years (Hamill et al., 2006) is
probably the best way to determine the calibration coefficients,

but this is computationally too costly for GLAMEPS. In stead
an improved BMA can be done by partly making statistics for
different geographical regions based and by partly stratifying
the samples used for estimating the calibration coefficients into
quantiles of the climatic frequency distributions. We intend to
pursue this way of implementing calibration, including investi-
gating the feasibility of using downscaled reanalyses.

In GLAMEPS there are also ongoing efforts to develop meth-
ods for more mesoscale initial perturbations that are more di-
rectly developed for the short range than the global EuroTEPS
(or EPS51). This includes ETKF (Bojarova et al., 2011) and
LAM-specific singular vectors that either maximize or sup-
press the convective available potential energy (CAPE) at final
time (Stappers and Barkmeijer, 2011). Experiments on forcing
perturbations and surface parameters, in particular soil mois-
ture, are also being developed. These are intended for a later
version of GLAMEPS if proven valuable and computationally
affordable.
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