647 research outputs found

    Method and apparatus for preloading a joint by remotely operable means

    Get PDF
    The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint

    Docking system for spacecraft

    Get PDF
    A mechanism is disclosed for the docking of a spacecraft to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a spacecraft and a passive docking structure on the station. The passive structure includes a docking ring mounted on a tunnel structure fixed to the space station. The active structure includes a docking ring carried by an actuator-attenuator devices, each attached at one end to the ring and at its other end in the spacecraft payload bay. The devices respond to command signals for moving the docking ring between a stowed position in the spacecraft to a deployed position suitable for engagement with the docking ring. The devices comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled spacecraft and station into final docked configuration and moving the tunnel structure to a berthed position in the spacecraft. Latches couple the spacecraft and space station upon contact of the docking rings and latches establish a structural tie between the spacecraft when retracted

    Load limiting energy absorbing lightweight debris catcher

    Get PDF
    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate

    Docking system for spacecraft

    Get PDF
    A mechanism for the docking of a space vehicle to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a space vehicle 10 and a passive docking structure on a station 11. The passive structure includes a docking ring 50 mounted on a tunnel structure 35 fixed to the space station. The active structure including a docking ring 18 carried by actuator-attenuator devices 20, each attached at one end to the ring 18 and at its other end in the vehicle's payload bay 12. The devices 20 respond to command signals for moving the docking ring 18 between a stowed position in the space vehicle to a deployed position suitable for engagement with the docking ring 50. The devices 20 comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled space vehicle and station into final docked configuration and moving the tunnel structure to a berthed position in the space vehicle 10. Latches 60 couple the space vehicle and space station upon contact of docking rings 18 and 50 and latches 41-48 establish a structural tie between the spacecraft when retracted

    Orbiter escape pole

    Get PDF
    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness

    Socially assistive robotics for post-stroke rehabilitation

    Get PDF
    BACKGROUND: Although there is a great deal of success in rehabilitative robotics applied to patient recovery post stroke, most of the research to date has dealt with providing physical assistance. However, new rehabilitation studies support the theory that not all therapy need be hands-on. We describe a new area, called socially assistive robotics, that focuses on non-contact patient/user assistance. We demonstrate the approach with an implemented and tested post-stroke recovery robot and discuss its potential for effectiveness. RESULTS: We describe a pilot study involving an autonomous assistive mobile robot that aids stroke patient rehabilitation by providing monitoring, encouragement, and reminders. The robot navigates autonomously, monitors the patient's arm activity, and helps the patient remember to follow a rehabilitation program. We also show preliminary results from a follow-up study that focused on the role of robot physical embodiment in a rehabilitation context. CONCLUSION: We outline and discuss future experimental designs and factors toward the development of effective socially assistive post-stroke rehabilitation robots

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore