527 research outputs found
Network constraints on learnability of probabilistic motor sequences
Human learners are adept at grasping the complex relationships underlying
incoming sequential input. In the present work, we formalize complex
relationships as graph structures derived from temporal associations in motor
sequences. Next, we explore the extent to which learners are sensitive to key
variations in the topological properties inherent to those graph structures.
Participants performed a probabilistic motor sequence task in which the order
of button presses was determined by the traversal of graphs with modular,
lattice-like, or random organization. Graph nodes each represented a unique
button press and edges represented a transition between button presses. Results
indicate that learning, indexed here by participants' response times, was
strongly mediated by the graph's meso-scale organization, with modular graphs
being associated with shorter response times than random and lattice graphs.
Moreover, variations in a node's number of connections (degree) and a node's
role in mediating long-distance communication (betweenness centrality) impacted
graph learning, even after accounting for level of practice on that node. These
results demonstrate that the graph architecture underlying temporal sequences
of stimuli fundamentally constrains learning, and moreover that tools from
network science provide a valuable framework for assessing how learners encode
complex, temporally structured information.Comment: 29 pages, 4 figure
Functional brain network architecture supporting the learning of social networks in humans
Most humans have the good fortune to live their lives embedded in richly
structured social groups. Yet, it remains unclear how humans acquire knowledge
about these social structures to successfully navigate social relationships.
Here we address this knowledge gap with an interdisciplinary neuroimaging study
drawing on recent advances in network science and statistical learning.
Specifically, we collected BOLD MRI data while participants learned the
community structure of both social and non-social networks, in order to examine
whether the learning of these two types of networks was differentially
associated with functional brain network topology. From the behavioral data in
both tasks, we found that learners were sensitive to the community structure of
the networks, as evidenced by a slower reaction time on trials transitioning
between clusters than on trials transitioning within a cluster. From the
neuroimaging data collected during the social network learning task, we
observed that the functional connectivity of the hippocampus and
temporoparietal junction was significantly greater when transitioning between
clusters than when transitioning within a cluster. Furthermore, temporoparietal
regions of the default mode were more strongly connected to hippocampus,
somatomotor, and visual regions during the social task than during the
non-social task. Collectively, our results identify neurophysiological
underpinnings of social versus non-social network learning, extending our
knowledge about the impact of social context on learning processes. More
broadly, this work offers an empirical approach to study the learning of social
network structures, which could be fruitfully extended to other participant
populations, various graph architectures, and a diversity of social contexts in
future studies
Individual Differences in Learning Social and Non-Social Network Structures
How do people acquire knowledge about which individuals belong to different cliques or communities? And to what extent does this learning process differ from the process of learning higher-order information about complex associations between non-social bits of information? Here, we employ a paradigm in which the order of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex network. We examined individual differences in the ability to learn community structure of networks composed of social versus non-social stimuli. Although participants were able to learn community structure of both social and non-social networks, their performance in social network learning was uncorrelated with their performance in non-social network learning. In addition, social traits, including social orientation and perspective-taking, uniquely predicted the learning of social community structure but not the learning of non-social community structure. Taken together, our results suggest that the process of learning higher-order community structure in social networks is partially distinct from the process of learning higher-order community structure in non-social networks. Our study design provides a promising approach to identify neurophysiological drivers of social network versus non-social network learning, extending our knowledge about the impact of individual differences on these learning processes
Controllability of structural brain networks.
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function
Non-steroidal anti-inflammatory drugs and the risk of psychosis
The objective of the current research was to examine the relation between nonsteroidal anti-inflammatory drugs (NSAID) use and risk of psychosis. To this end we performed a longitudinal case-control study using prescription data from a Dutch health insurance company. Men aged 25 years or over and women aged 30 years or over were excluded to prevent inclusion of non-incident cases. This resulted in eighty-two cases and 359 randomly selected controls from the same population. The overall relative risk of incident antipsychotic use for NSAID users, adjusted for age and prescription frequency, was 0.80 (95% CI: 0.48-1.33). After stratification for gender the risk of psychosis was significantly lower (59%) in male NSAID users only. The relative risks for male and female subjects were 0.41 (95% CI: 0.17-0.97) and 1.31 (95% CI: 0.65-2.64), respectively. These results suggest that in men NSAIDs may lower the risk of psychosis. (c) 2006 Elsevier B.V. and ECNP. All rights reserved
The Ursinus Weekly, December 5, 1949
WSSF drive collects donations of 1,000 endeavor • Festive air to reign at \u2750\u27s starlight ball • Wilson and Styres return as soloists for Messiah • Women to complete plans for yuletide • Armstrong to give Christmas message • \u27Ruby\u27 to complete individuals\u27 orders in picture schedule • Hordern expounds need for revision in foreign policy • Juniors elect head for \u27Ruby\u27 business • Oratorio reflects composer\u27s faith • Academy students present concert for campus body • Debaters travel to Rider for novice broadcast meet • Remig wins school with affable nature as maintenance department assistant • Fall play cast scores hit with Pygmalion • John O\u27Hara tells of summer tour in England, France • Academy publishes December program of varied concerts • Part 1 of the perennial Weekly saga • Preceding Christmas seasons provide color for traditional campus yuletide • Quarter of students hold self-help jobs • Matmen strive to better last year\u27s good record • Evans, Duncan triumph in field hockey tourney • Statistics register grid strong points for current season • Baker\u27s bums bow to Snell\u27s belles in annual meeting • Bears win first 59-30 over crusader squad • Practice games set to launch campus basketball schedule • Pattison to captain \u2749 swimming team in tough schedule • Jayvee team opens season with victory • Ursinus establishes new disposal plant • Chess men reach deadlock in third Lansdale match • Glenwood-Lynnewood leads in interdorm hockey racehttps://digitalcommons.ursinus.edu/weekly/1579/thumbnail.jp
Treatment of Patients with the Hypereosinophilic Syndrome with Mepolizumab
BACKGROUND
The hypereosinophilic syndrome is a group of diseases characterized by persistent blood eosinophilia, defined as more than 1500 cells per microliter with end-organ involvement and no recognized secondary cause. Although most patients have a response to corticosteroids, side effects are common and can lead to considerable morbidity.
METHODS
We conducted an international, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of an anti–interleukin-5 monoclonal antibody, mepolizumab, in patients with the hypereosinophilic syndrome. Patients were negative for the FIP1L1–PDGFRA fusion gene and required prednisone monotherapy, 20 to 60 mg per day, to maintain a stable clinical status and a blood eosinophil count of less than 1000 per microliter. Patients received either intravenous mepolizumab or placebo while the prednisone dose was tapered. The primary end point was the reduction of the prednisone dose to 10 mg or less per day for 8 or more consecutive weeks.
RESULTS
The primary end point was reached in 84% of patients in the mepolizumab group, as compared with 43% of patients in the placebo group (hazard ratio, 2.90; 95% confidence interval [CI], 1.59 to 5.26; P
CONCLUSIONS
Our study shows that treatment with mepolizumab, an agent designed to target eosinophils, can result in corticosteroid-sparing for patients negative for FIP1L1– PDGFRA who have the hypereosinophilic syndrome. (ClinicalTrials.gov number, NCT00086658.
Propellantless de orbiting of space debris by bare electrodynamic tethers
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
- …