101 research outputs found

    MyBP-C: one protein to govern them all

    Get PDF
    The heart is an extraordinarily versatile pump, finely tuned to respond to a multitude of demands. Given the heart pumps without rest for decades its efficiency is particularly relevant. Although many proteins in the heart are essential for viability, the non-essential components can attract numerous mutations which can cause disease, possibly through alterations in pumping efficiency. Of these, myosin binding protein C is strongly over-represented with ~ 40% of all known mutations in hypertrophic cardiomyopathy. Therefore, a complete understanding of its molecular function in the cardiac sarcomere is warranted. In this review, we revisit contemporary and classical literature to clarify both the current standing of this fast-moving field and frame future unresolved questions. To date, much effort has been directed at understanding MyBP-C function on either thick or thin filaments. Here we aim to focus questions on how MyBP-C functions at a molecular level in the context of both the thick and thin filaments together. A concept that emerges is MyBP-C acts to govern interactions on two levels; controlling myosin access to the thin filament by sequestration on the thick filament, and controlling the activation state and access of myosin to its binding sites on the thin filament. Such affects are achieved through directed interactions mediated by phosphorylation (of MyBP-C and other sarcomeric components) and calcium

    Culture media, DMSO and efflux affect the antibacterial activity of cisplatin and oxaliplatin

    Get PDF
    Cisplatin was originally discovered through its antibacterial action and subsequently has found use as a potent broad-spectrum anticancer agent. This study determines the effect of growth media and solvent on the antibacterial activity of cisplatin and its analogue, oxaliplatin. Escherichia coli MG1655 or MG1655 ΔtolC was treated with the platinum compounds under different conditions and susceptibility was determined. Our results showed that DMSO reduced the activity of cisplatin by fourfold (MIC 12·5 mg l-1 ) compared with 0·9% NaCl-solubilized cisplatin (MIC 3·12 mg l-1 ) when tested in MOPS. Surprisingly, complete loss of activity was observed in Mueller-Hinton Broth II (MHB II). By supplementing MOPS with individual components of MHB II such as the sulphur-containing amino acids, l-cysteine and l-methionine, individually or in combination reduced activity by ≥8-fold (MIC ≥25 mg l-1 ). Oxaliplatin was less active against E. coli (MIC 100 mg l-1 ) but exhibited similar inactivation in the presence of DMSO, MHBII or MOPS spiked with l-cysteine and l-methionine (MIC ≥400 mg l-1 ). Our data suggest that the antibacterial activity of cisplatin and oxaliplatin is modulated by both choice of solvent and composition of growth media. We demonstrate that this is primarily due to sulphur-containing amino acids cysteine and methionine, an essential component of the recommended media for testing antimicrobial susceptibility, MHBII

    Identification of a novel DNA repair inhibitor using an in silico driven approach shows effective combinatorial activity with genotoxic agents against multidrug-resistant Escherichia coli

    Get PDF
    Increasing antimicrobial drug resistance represents a global existential threat. Infection is a particular problem in immunocompromised individuals, such as patients undergoing cancer chemotherapy, due to the targeting of rapidly dividing cells by antineoplastic agents. We recently developed a strategy that targets bacterial nucleotide excision DNA repair (NER) to identify compounds that act as antimicrobial sensitizers specific for patients undergoing cancer chemotherapy. Building on this, we performed a virtual drug screening of a ~120,000 compound library against the key NER protein UvrA. From this, numerous target compounds were identified and of those a candidate compound, Bemcentinib (R428), showed a strong affinity toward UvrA. This NER protein possesses four ATPase sites in its dimeric state, and we found that Bemcentinib could inhibit UvrA's ATPase activity by ~90% and also impair its ability to bind DNA. As a result, Bemcentinib strongly diminishes NER's ability to repair DNA in vitro. To provide a measure of in vivo activity we discovered that the growth of Escherichia coli MG1655 was significantly inhibited when Bemcentinib was combined with the DNA damaging agent 4-NQO, which is analogous to UV. Using the clinically relevant DNA-damaging antineoplastic cisplatin in combination with Bemcentinib against the urological sepsis-causing E. coli strain EC958 caused complete growth inhibition. This study offers a novel approach for the potential development of new compounds for use as adjuvants in antineoplastic therapy

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Processive Movement by a Kinesin Heterodimer with an Inactivating Mutation in One Head†

    Get PDF
    ABSTRACT: A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50 % of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other

    Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge.</p> <p>Results</p> <p>We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC) devoted to BN structure learning.</p> <p>Conclusion</p> <p>We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.</p

    Continuous Flow Reactor for the Production of Stable Amyloid Protein Oligomers

    Full text link
    The predominant working hypothesis of Alzheimer's disease is that the proximate pathologic agents are oligomers of the amyloid β-protein (Aβ). "Oligomer" is an ill-defined term. Many different types of oligomers have been reported, and they often exist in rapid equilibrium with monomers and higher-order assemblies. This has made formal structure-activity determinations difficult. Recently, Ono et al. [Ono, K., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 14745-14750] used rapid, zero-length, in situ chemical cross-linking to stabilize the oligomer state, allowing the isolation and study of pure populations of oligomers of a specific order (number of Aβ monomers per assembly). This approach was successful but highly laborious and time-consuming, precluding general application of the method. To overcome these difficulties, we developed a "continuous flow reactor" with the ability to produce theoretically unlimited quantities of chemically stabilized Aβ oligomers. We show, in addition to its utility for Aβ, that this method can be applied to a wide range of other amyloid-forming proteins

    A myosin II nanomachine mimicking the striated muscle

    Get PDF
    The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal-and regulatory-protein environment
    corecore