20 research outputs found

    Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene

    Get PDF
    The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (~500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial‐interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies

    Recurring types of variability and transitions in the ∌620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia

    Get PDF
    The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and hominin evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin (CHB). In this statistical project we used recurrence plots (RPs) together with a recurrence quantification analysis (RQA) to distinguish two types of variability and transitions in the Chew Bahir aridity record and compare them with the ODP Site 967 wetness index from the eastern Mediterranean. The first type of variability is one of slow variations with cycles of ∌20 kyr, reminiscent of the Earth's precession cycle, and subharmonics of this orbital cycle. In addition to these cyclical wet-dry fluctuations in the area, extreme events often occur, i.e. short wet or dry episodes, lasting for several centuries or even millennia, and rapid transitions between these wet and dry episodes. The second type of variability is characterized by relatively low variation on orbital time scales, but significant century-millennium-scale variations with progressively increasing frequencies. Within this type of variability there are extremely fast transitions between dry and wet within a few decades or years, in contrast to those within Type 1 with transitions over several hundreds of years. Type 1 variability probably reflects the influence of precessional forcing in the lower latitudes at times with maximum values of the long (400 kyr) eccentricity cycle of the Earth's orbit around the sun, with the tendency towards extreme events. Type 2 variability seems to be linked with minimum values of this cycle. There does not seem to be a systematic correlation between Type 1 or Type 2 variability with atmospheric CO2 concentration. The different types of variability and the transitions between those types had important effects on the availability of water, and could have transformed eastern Africa's environment considerably, which would have had important implications for the shaping of the habitat of H. sapiens and the direct ancestors of this species

    Paleo-ENSO influence on African environments and early modern humans

    Get PDF
    Our results identify the prime driver of climate variation in Africa’s low latitudes over the past 620 ky—the key time frame for the evolution of our species. Warming and cooling of the tropical Pacific Ocean paced by insolation changes modulated the tropical Walker circulation, driving opposing wet–dry states in eastern and western Africa. We show that the effects of glacial/interglacial cycles were not the predominant source of environmental change in most of the continent. Africa’s environmental patchwork driven by low-latitude climate processes should therefore be a critical component in conceptual models of human evolution and early demography over the past 620 ky.In this study, we synthesize terrestrial and marine proxy records, spanning the past 620 ky, to decipher pan-African climate variability and its drivers and potential linkages to hominin evolution. We find a tight correlation between moisture availability across Africa to El Niño Southern Ocean oscillation (ENSO) variability, a manifestation of the Walker Circulation, that was most likely driven by changes in Earth’s eccentricity. Our results demonstrate that low-latitude insolation was a prominent driver of pan-African climate change during the Middle to Late Pleistocene. We argue that these low-latitude climate processes governed the dispersion and evolution of vegetation as well as mammals in eastern and western Africa by increasing resource-rich and stable ecotonal settings thought to have been important to early modern humans.All study data are included in the article and/or supporting information.Results Discussion Conclusion Materials and Methods - pwPCA. - Breakpoint Analysis. - Median Calculation

    Improved chronostratigraphy for the Messel Formation (Hesse, Germany) provides insight into early to middle Eocene climate variability

    Get PDF
    Besides providing unique information on early mammal evolution, the UNESCO World Heritage Site “Messel Fossil Pit” (Hesse, Germany) yields detailed insight into short-term climate variability during the early to middle Eocene due to its annually laminated oil-shale sequence. Here, we constrain the chronostratigraphy of the sediments from the Messel paleolake to allow precise correlation with other marine and terrestrial archives from that time period. This study utilizes a suite of geochemical proxy data (gamma ray, total organic carbon and carbon isotopes of organic matter) obtained from a scientific drillcore (FB2001) from the depocenter of the Messel paleolake. The drillcore comprises the full succession of the lacustrine sediments of the Lower (LMF) and ~60% of the Middle Messel (MMF) Formations, including all marker beds that are used to stratigraphically correlate excavated fossil remains across the lake basin. Based on the proposed astronomical tuning, we infer that the LMF and MMF obtained in core FB2001 cover in total c. 840 kyr and were deposited between 48.06 Ma and 47.22 Ma. More specifically, our tuning yields a duration of c. 130 kyr and c. 430 kyr for the annually laminated oil shale of the LMF and MMF, respectively. Our results imply a slightly longer deposition of the LMF than previously proposed based on the same core. By contrast, the deposition of the MMF occurred over a slightly shorter time interval. As a result of our tuning approach, and considering the revision of a previously published 40Ar/39Ar age for the base of the LMF, the top of the MMF in core FB2001 has an age of 47.22 ± 0.21 Ma and is thus ~200 kyr younger than suggested previously. We also find that the average sedimentation rate (~20 cm/kyr) for the oil-shale intervals is slightly higher than previously estimated. In line with previously published palynological records our geochemical data point to a strongly variable climate during deposition of the LMF and MMF, with humidity changes being paced by orbital precession and eccentricity. The synchronicity of negative excursions in the organic matter-derived carbon-isotope signals for the LMF and MMF as presented in our study to those registered in quasi-global carbon-isotope compilations further corroborates the robustness of our age model. As these quasi-global carbon-isotope anomalies represent disturbances of the global carbon cycle and are often associated with abrupt warming events (“hyperthermals”), the organic-rich sediments recovered at Messel provide the opportunity to study the response of aquatic and terrestrial ecosystems to climate disturbances in un­precedented temporal resolution

    Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal

    Get PDF
    Abstract: Reconstructions of climatic and environmental conditions can contribute to current debates about the factors that influenced early human dispersal within and beyond Africa. Here we analyse a 200,000-year multi-proxy paleoclimate record from Chew Bahir, a tectonic lake basin in the southern Ethiopian rift. Our record reveals two modes of climate change, both associated temporally and regionally with a specific type of human behavior. The first is a long-term trend towards greater aridity between 200,000 and 60,000 years ago, modulated by precession-driven wet-dry cycles. Here, more favorable wetter environmental conditions may have facilitated long-range human expansion into new territory, while less favorable dry periods may have led to spatial constriction and isolation of local human populations. The second mode of climate change observed since 60,000 years ago mimics millennial to centennial-scale Dansgaard-Oeschger cycles and Heinrich events. We hypothesize that human populations may have responded to these shorter climate fluctuations with local dispersal between montane and lowland habitats

    Pleistocene climate variability in eastern Africa influenced hominin evolution

    Get PDF
    AbstractDespite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 years bp (episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 years bp) could have facilitated the global dispersal of H. sapiens.</jats:p

    Contourites and bottom current reworked sands:Bed facies model and implications

    Get PDF

    The climate and vegetation backdrop to hominin evolution in Africa

    No full text
    The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue ‘Tropical forests in the deep human past’

    Ice-rafted debris as a source of non-conservative behaviour for the ΔNd palaeotracer: insights from a simple model

    No full text
    Neodymium isotopic composition (ΔNd) has enjoyed widespread use as a palaeotracer, principally because it behaves quasi-conservatively in the modern ocean. However, recent bottom water ΔNd reconstructions from the eastern North Atlantic are difficult to interpret under assumptions of conservative behaviour. The observation that this apparent departure from conservative behaviour increases with enhanced ice-rafted debris (IRD) fluxes has resulted in the suggestion that IRD leads to the overprinting of bottom water ΔNd through reversible scavenging. In this study, a simple water column model successfully reproduces ΔNd reconstructions from the eastern North Atlantic at the Last Glacial Maximum and Heinrich Stadial 1, and demonstrates that the changes in scavenging intensity required for good model-data fit is in good agreement with changes in the observed IRD flux. Although uncertainties in model parameters preclude a more definitive conclusion, the results indicate that the suggestion of IRD as a source of non-conservative behaviour in the ΔNd tracer is reasonable and that further research into the fundamental chemistry underlying the marine neodymium cycle is necessary to increase confidence in assumptions of conservative ΔNd behaviour in the past

    Late Holocene Precipitation Fluctuations in South America Triggered by Variability of the North Atlantic Overturning Circulation

    No full text
    Historic droughts document the strong spatio-temporal variability of the South American Monsoon System, which currently provides more than two thirds of the rainfall in tropical South America. The drivers of this variability have remained not well understood due to the lack of continuous, high-resolution paleorecords, especially from the more arid regions of tropical South America. Here we present a novel record of moisture availability across eastern South America for the past similar to 5,000 years from a sediment core retrieved off eastern Brazil. We document distinct decadal- to millennial-scale spatial shifts of major atmospheric convection centers that caused increasingly pronounced droughts in eastern South America over the past similar to 2,000 years. These fluctuations were triggered by climate anomalies in the high northern latitudes and propagated into equatorial latitudes via fluctuations in North Atlantic Overturning Circulation strength. As global warming is expected to decrease oceanic overturning due to enhanced meltwater input into the North Atlantic while at the same time reducing precipitation over eastern South America, an increasing risk for long-lasting droughts can be expected for this region, posing severe socio-economic challenges
    corecore