264 research outputs found

    Impacts of cyclone and flood on crop and fish production in disaster prone coastal Bhola district of Bangladesh

    Get PDF
    This study assessed the impact of climate change induced disaster on crops and fisheries production at Bhola Sadar and Monpura upazila of Bhola district, Bangladesh during January to June 2018. The study was gathered primary data from primary observation (PO), questionnaire survey (QS), focus group discussion (FGD), and key informant interview (KII). Secondary data were collected from Upazila Agricultural Office and Upazila Fisheries Office of Bhola Sadar and Manpura upazila and moreover, climatic data were collected from Bangladesh Meteorological Department. Results of the study found that trend analysis indicates overall annual maximum temperature increased for Kharif-I, Kharif-II and Rabi season. Average annual minimum temperature also increased for Kharif-I season but decreased for Kharif-II and Rabi season. Study also found that for all cropping season average relative humidity was increased. Annual average rainfall exhibited decreasing trend for Kharif-I and Rabi season but increased for Kharif-II season in (1990-2019) time period. The Aus, T. Aman, Boro and Mung bean was dominant cropping pattern in Kharif-I, Kharif- II and Rabi season in Bhola district. Overall, Aus rice production in Kharif-I season increased but in 2009, 2013 production was decreased because of cyclone Aila (2009) and Cyclone Mahasen (2013). T. Aman production hampered due to Cyclone Sidr (2007) and flood (2014) in Kharif-II season. In Rabi season Boro rice production lessen because of low rainfall and salinity intrusion. Overall, Mung bean production increase but in 2008 and 2009 production become hampered due to late cultivation because of Cyclone Sidr (2007). Fish production rate increase in Bhola specially Hilsha fish because of non-climatic factor like raid in non-fishing time, banned current net but fish production in pond become diminished due to infrequent natural disaster. Practicing of salt and flood tolerant varieties, floating bed vegetable cultivation, and mixed cropping system (mainly for Rabi season), enhanced expedition activities against catching mother Ilish in prohibition period, dredging in the heart of the river which can eventually reduce vulnerabilities and increase crop and fish production in the Bhola region. Int. J. Agril. Res. Innov. Tech. 10(1): 40-55, June 202

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Reversible C-H bond activation at a triosmium centre: A comparative study of the reactivity of unsaturated triosmium clusters Os3(CO)8(μ-dppm)(μ-H)2 and Os3(CO)8(μ-dppf)(μ-H)2 with activated alkynes

    Get PDF
    Heating a benzene solution of the unsaturated cluster Os3(CO)8(μ-dppm)(μ-H)2 (1) [dppm = bis(diphenylphosphino)methane] with MeO2CCtriple bond; length of mdashCCO2Me (DMAD) or EtO2CCtriple bond; length of mdashCCO2Et (DEAD) at 80 °C furnished the dinuclear compounds Os2(CO)4(μ-dppm)(μ-η2;η1;к1-RO2CCCHCO2R)(μ-H) (3a, R = Me, 3b, R = Et) and the saturated trinuclear complexes Os3(CO)7(μ-dppm)(μ3-η2;η1;η1-RO2CCCCO2R)(μ-H)2 (4a, R = Me, 4b, R = Et). In contrast, similar reactions using unsaturated Os3(CO)8(μ-dppf)(μ-H)2 (2) [dppf = bis(diphenylphosphino)ferrocene] afforded only the trinuclear complexes Os3(CO)8(μ-dppf)(μ-η2;η1-RO2CCHCCO2R)(μ-H) (5a, R = Me; 5b, R = Et) and Os3(CO)7(μ-dppf)(μ3-η2;η1;η1-RO2CCCCO2R)(μ-H)2 (6a, R = Me; 6b, R = Et). Control experiments confirm that 5a and 5b decarbonylate at 80 °C to give 6a and 6b, respectively. Both 5a and 5b exist as a pair of isomers in solution, as demonstrated by 1H NMR and 31P{1H} NMR spectroscopy. DFT calculations on cluster 5a (as the dppf-Me4 derivative) indicate that the isomeric mixture derives from a torsional motion that promotes the conformational flipping of the cyclopentadienyl groups of the dppf-Me4 ligand relative to the metallic plane. VT NMR measurements on clusters 6a and 6b indicate that while the hydride ligand associated with the dppf-bridged Os-Os bond is nonfluxional at room temperature, the second hydride rapidly oscillates between the two non-dppf-bridged Os-Os edges. DFT examination of this hydride fluxionality confirms a “windshield wiper” motion for the labile hydride that gives rise to a time-average coupling of this hydride to both phosphorus centers of the dppf ligand. Thermolysis of 6a and 6b in refluxing toluene yielded Os3(CO)7(μ-dppf)(μ-η2;η1;к1-CCHCO2R) (7a, R=Me; 7b, R=Et). The vinylidene moieties in 7a and 7b derive from the carbon-carbon bond cleavage of coordinated alkyne ligands, and these two products exhibit high thermal stability in refluxing toluene

    Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis

    Get PDF
    Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes

    Iron carbonyl complexes bearing phenazine and acridine ligands: X-ray structures of Fe(CO)(3)(eta(4)-C12H8N2), Fe(CO)(2){P(OMe)(3)}(eta(4)-C12H8N2), Fe(CO)(2)(PPh3) (eta(4)-C13H9N), and Fe(CO)(2)(kappa(1)-dppm) (eta(4)-C12H8N2)

    Get PDF
    Reactions of Fe3(CO)12 with the heterocycles phenazine and acridine in refluxing benzene afforded the mononuclear complexes Fe(CO)3(η4-C12H8N2) (1a) and Fe(CO)3(η4-C13H9N) (1b), respectively. Treatment of 1a with P(OMe)3 and PPh3 in the presence of Me3NO at room temperature yielded the carbonyl substitution products Fe(CO)2{P(OMe)3}(η4-C12H8N2) (2a) and Fe(CO)2(PPh3) (η4-C12H8N2) (3a), respectively. Similar reactions of 1b yielded Fe(CO)2{P(OMe)3}(η4-C13H9N) (2b) and Fe(CO)2(PPh3) (η4-C13H9N) (3b). Treatment of 1a with the diphosphines dppm and dppf under similar conditions afforded the mononuclear compounds Fe(CO)2(κ1-dppm) (η4-C12H8N2) (4a) and Fe(CO)2(κ1-dppf) (η4-C12H8N2) (4b). Compounds 1a, 2a, 3b, and 4a have been structurally characterized by X-ray crystallography. The ancillary phenazine and acridine ligands in these products adopt an η4-coordination mode by using only the peripheral carbon atoms in one of the carbocyclic rings. Given the rarity of this coordination mode in metal carbonyl complexes, we have performed electronic structure calculations on 1a, and these data are discussed relative to the solid-state structur

    Comparative LCA technology improvement opportunities for a 1.5 MW wind turbine in the context of an offshore wind farm

    Get PDF
    Wind energy is playing an increasingly important role in the development of cleaner and more efficient energy technologies leading to projections in reliability and performance of future wind turbine designs. This paper presents life cycle assessment (LCA) results of design variations for a 1.5 MW wind turbine due to the potential for advances in technology to improve the performance of a 1.5 MW wind turbine. Five LCAs have been conducted for design variants of a 1.5 MW wind turbine. The objective is to evaluate potential environmental impacts per kilowatt hour of electricity generated for a 114 MW onshore wind farm. Results for the baseline turbine show that higher contributions to impacts were obtained in the categories Ozone Depletion Potential, Marine Aquatic Eco-toxicity Potential, Human Toxicity Potential and Terrestrial Eco-toxicity Potential compared to Technology Improvement Opportunities (TIOs) 1 to 4. Compared to the baseline turbine, TIO 1 showed increased impact contributions to Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential and Photochemical Ozone Creation Potential, and TIO 2 showed an increase in contributions to Abiotic Depletion Potential, Acidification Potential and Global Warming Potential. Additionally, lower contributions to all the environmental categories were observed for TIO 3 while increased contributions towards Abiotic Depletion Potential and Global Warming Potential were noted for TIO 4. A comparative LCA study of wind turbine design variations for a particular power rating has not been explored in the literature. This study presents new insight into the environmental implications related with projected wind turbine design advancements

    Fuzzy evidence theory and Bayesian networks for process systems risk analysis

    Get PDF
    YesQuantitative risk assessment (QRA) approaches systematically evaluate the likelihood, impacts, and risk of adverse events. QRA using fault tree analysis (FTA) is based on the assumptions that failure events have crisp probabilities and they are statistically independent. The crisp probabilities of the events are often absent, which leads to data uncertainty. However, the independence assumption leads to model uncertainty. Experts’ knowledge can be utilized to obtain unknown failure data; however, this process itself is subject to different issues such as imprecision, incompleteness, and lack of consensus. For this reason, to minimize the overall uncertainty in QRA, in addition to addressing the uncertainties in the knowledge, it is equally important to combine the opinions of multiple experts and update prior beliefs based on new evidence. In this article, a novel methodology is proposed for QRA by combining fuzzy set theory and evidence theory with Bayesian networks to describe the uncertainties, aggregate experts’ opinions, and update prior probabilities when new evidences become available. Additionally, sensitivity analysis is performed to identify the most critical events in the FTA. The effectiveness of the proposed approach has been demonstrated via application to a practical system.The research of Sohag Kabir was partly funded by the DEIS project (Grant Agreement 732242)

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore