49 research outputs found

    Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton-bacteria communities

    Get PDF
    Microbial consumption of phytoplankton-derived organic carbon in the pelagic food web is an important component of the global C cycle. We studied C cycling in two phytoplankton-bacteria systems (non-axenic cultures of a dinoflagellate Apocalathium malmogiense and a cryptophyte Rhodomonas marina) in two complementary experiments. In the first experiment we grew phytoplankton and bacteria in nutrient-replete conditions and followed C processing at early exponential growth phase and twice later when the community had grown denser. Cell-specific primary production and total community respiration were up to 4 and 7 times higher, respectively, in the A. malmogiense treatments. Based on the optical signals, accumulating dissolved organic C (DOC) was degraded more in the R. marina treatments, and the rate of bacterial production to primary production was higher. Thus, the flow of C from phytoplankton to bacteria was relatively higher in R. marina treatments than in A. malmogiense treatments, which was further supported by faster C-14 transfer from phytoplankton to bacterial biomass. In the second experiment we investigated consumption of the phytoplankton-derived DOC by bacteria. DOC consumption and transformation, bacterial production, and bacterial respiration were all higher in R. marina treatments. In both experiments A. malmogiense supported a bacterial community predominated by bacteria specialized in the utilization of less labile DOC (class Bacteroidia), whereas R. marina supported a community predominated by copiotrophic Alphaand Gammaproteobacteria. Our findings suggest that large dinoflagellates cycle relatively more C between phytoplankton biomass and the inorganic C pool, whereas small cryptophytes direct relatively more C to the microbial loop.Peer reviewe

    Variation in Riverine Inputs Affect Dissolved Organic Matter Characteristics throughout the Estuarine Gradient

    Get PDF
    Terrestrial dissolved organic matter (DOM) undergoes significant changes during the estuarine transport from river mouths to the open sea. These include transformations and degradation by biological and chemical processes, but also the production of fresh organic matter. Since many of these processes occur simultaneously, properties of the DOM pool represent the net changes during the passage along the hydrological path. We examined changes in multiple DOM characteristics across three Finnish estuarine gradients during spring, summer and autumn: Dissolved organic carbon (DOC) concentration, coloured DOM absorbance and fluorescence, stable carbon isotope signal of DOC and molecular size distribution. Changes in these DOM characteristics with salinity were analysed in relation to residence time (i.e. freshwater transit time), since increased residence time is likely to enhance DOM degradation while stimulating autochthonous DOM production at the same time. Our results show that the investigated DOM characteristics are highly correlated, indicating common physico-chemical transformations along the salinity continuum. Residence time did not explain variations in the DOM characteristics any better than salinity. Due to large variations in DOM characteristics at the river end-member, conservative mixing models do not seem to be able to accurately describe the occurrence and extent of deviations in DOM properties in the estuaries we investigated.Peer reviewe

    Biological feedbacks as cause and demise of Neoproterozoic icehouse : astrobiological prospects for faster evolution and importance of cold conditions

    Get PDF
    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.Peer reviewe

    Polycyclic aromatic hydrocarbon sorption and bacterial community composition of biodegradable and conventional plastics incubated in coastal sediments

    Get PDF
    Resistant to degradation, plastic litter poses a long-term threat to marine ecosystems. Biodegradable materials have been developed to replace conventional plastics, but little is known of their impacts and degradation in marine environments. A 14-week laboratory experiment was conducted to investigate the sorption of polycyclic aromatic hydrocarbons (PAHs) to conventional (polystyrene PS and polyamide PA) and bio-based, biodegradable plastic films (cellulose acetate CA and poly-L-lactic acid PLLA), and to examine the composition of bacterial communities colonizing these materials. Mesoplastics (1 cm(2)) of these materials were incubated in sediment and seawater collected from two sites in the Gulf of Finland, on the coast of the highly urbanized area of Helsinki, Finland. PS sorbed more PAHs than did the other plastic types at both sites, and the concentration of PAHs was consistently and considerably smaller in plastics than in the sediment. In general, the plastic bacterial biofilms resembled those in the surrounding media (water and/or sediment). However, in the sediment incubations, the community composition on CA diverged from that of the other three plastic types and was enriched with Bacteroidia and potentially cellulolytic Spirochaetia at both sites. The results indicate that certain biodegradable plastics, such as CA, may harbour potential bioplastic-degrading communities and that PAH sorption capacity varies between polymer types. Since biodegradable plastics are presented as replacements for conventional plastics in applications with risk of ending up in the marine environment, the results highlight the need to carefully examine the environmental behaviour of each biodegradable plastic type before they are extensively introduced to the market. (C) 2020 The Author(s). Published by Elsevier B.V.peerReviewe

    The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    Get PDF
    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 µmol Lwater-1 in SW to 249 µmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air–ice and ice–water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions

    Suomen merentutkimuksen ydinkysymykset - Merentutkimuslaitos suomalaisessa yhteiskunnassa

    Get PDF
    Julkaisu sisältää myös toisen artikkelin: Kimmo K. Kahma: Scientific impact of the Finnish Institute of Marine Research: a citation analysi

    Sea-Ice Bacteria Halomonas sp. Strain 363 and Paracoccus sp. Strain 392 Produce Multiple Types of Poly-3-Hydroxyalkaonoic Acid (PHA) Storage Polymers at Low Temperature

    Get PDF
    Poly-3-hydroxyalkanoic acids (PHAs) are bacterial storage polymers commonly used in bioplastic production. Halophilic bacteria are industrially interesting organisms, as their salinity tolerance and psychrophilic nature lowers sterility requirements and subsequent production costs. We investigated PHA synthesis in two bacterial strains, Halomonas sp. 363 and Paracoccus sp. 392, isolated from Southern Ocean sea ice and elucidated the related PHA biopolymer accumulation and composition with various approaches, such as transcriptomics, microscopy, and chromatography. We show that both bacterial strains produce PHAs at 4 degrees C when the availability of nitrogen and/or oxygen limited growth. The genome of Halomonas sp. 363 carries three phaC synthase genes and transcribes genes along three PHA pathways (I to III), whereas Paracoccus sp. 392 carries only one phaC gene and transcribes genes along one pathway (I). Thus, Halomonas sp. 363 has a versatile repertoire of phaC genes and pathways enabling production of both short- and medium-chain-length PHA products. IMPORTANCE Plastic pollution is one of the most topical threats to the health of the oceans and seas. One recognized way to alleviate the problem is to use degradable bioplastic materials in high-risk applications. PHA is a promising bioplastic material as it is nontoxic and fully produced and degraded by bacteria. Sea ice is an interesting environment for prospecting novel PHA-producing organisms, since traits advantageous to lower production costs, such as tolerance for high salinities and low temperatures, are common. We show that two sea-ice bacteria, Halomonas sp. 363 and Paracoccus sp. 392, are able to produce various types of PHA from inexpensive carbon sources. Halomonas sp. 363 is an especially interesting PHA-producing organism, since it has three different synthesis pathways to produce both short- and medium-chain-length PHAs.peerReviewe

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    Get PDF
    The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on the shelves, although the loss of sea ice exacerbates the demise of sea-ice fauna, endemic fish and megafauna. Sea-ice loss may also deliver more methane to the atmosphere, but warmer ice may release fewer halogens, resulting in fewer ozone depletion events. The net changes in carbon drawdown are still highly uncertain. Despite large uncertainties in these assessments, we expect disruptive changes that warrant intensified long-term observations and modelling efforts
    corecore