8 research outputs found

    Prevalence, incidence and risk factors of epilepsy in older children in rural Kenya.

    Get PDF
    BACKGROUND: There is little data on the burden or causes of epilepsy in developing countries, particularly in children living in sub-Saharan Africa. METHODS: We conducted two surveys to estimate the prevalence, incidence and risk factors of epilepsy in children in a rural district of Kenya. All children born between 1991 and 1995 were screened with a questionnaire in 2001 and 2003, and those with a positive response were then assessed for epilepsy by a clinician. Active epilepsy was defined as two or more unprovoked seizures with one in the last year. RESULTS: In the first survey 10,218 children were identified from a census, of whom 110 had epilepsy. The adjusted prevalence estimates of lifetime and active epilepsy were 41/1000 (95% CI: 31-51) and 11/1000 (95% CI: 5-15), respectively. Overall two-thirds of children had either generalized tonic-clonic and/or secondary generalized seizures. A positive history of febrile seizures (OR=3.01; 95% CI: 1.50-6.01) and family history of epilepsy (OR=2.55; 95% CI: 1.19-5.46) were important risk factors for active epilepsy. After the second survey, 39 children from the same birth cohort with previously undiagnosed epilepsy were identified, thus the incidence rate of active epilepsy is 187 per 100,000 per year (95% CI: 133-256) in children aged 6-12 years. CONCLUSIONS: There is a considerable burden of epilepsy in older children living in this area of rural Kenya, with a family history of seizures and a history of febrile seizures identified as risk factors for developing epilepsy

    The validation of a three-stage screening methodology for detecting active convulsive epilepsy in population-based studies in health and demographic surveillance systems.

    Get PDF
    UNLABELLED: BACKGROUND: There are few studies on the epidemiology of epilepsy in large populations in Low and Middle Income Countries (LMIC). Most studies in these regions use two-stage population-based screening surveys, which are time-consuming and costly to implement in large populations required to generate accurate estimates. We examined the sensitivity and specificity of a three-stage cross-sectional screening methodology in detecting active convulsive epilepsy (ACE), which can be embedded within on-going census of demographic surveillance systems.We validated a three-stage cross-sectional screening methodology on a randomly selected sample of participants of a three-stage prevalence survey of epilepsy. Diagnosis of ACE by an experienced clinician was used as 'gold standard'. We further compared the expenditure of this method with the standard two-stage methodology. RESULTS: We screened 4442 subjects in the validation and identified 35 cases of ACE. Of these, 18 were identified as false negatives, most of whom (15/18) were missed in the first stage and a few (3/18) in the second stage of the three-stage screening. Overall, this methodology had a sensitivity of 48.6% and a specificity of 100%. It was 37% cheaper than a two-stage survey. CONCLUSION: This was the first study to evaluate the performance of a multi-stage screening methodology used to detect epilepsy in demographic surveillance sites. This method had poor sensitivity attributed mainly to stigma-related non-response in the first stage. This method needs to take into consideration the poor sensitivity and the savings in expenditure and time as well as validation in target populations. Our findings suggest the need for continued efforts to develop and improve case-ascertainment methods in population-based epidemiological studies of epilepsy in LMIC

    Prevalence of active convulsive epilepsy in sub-Saharan Africa and associated risk factors: cross-sectional and case-control studies.

    Get PDF
    BACKGROUND: The prevalence of epilepsy in sub-Saharan Africa seems to be higher than in other parts of the world, but estimates vary substantially for unknown reasons. We assessed the prevalence and risk factors of active convulsive epilepsy across five centres in this region. METHODS: We did large population-based cross-sectional and case-control studies in five Health and Demographic Surveillance System centres: Kilifi, Kenya (Dec 3, 2007-July 31, 2008); Agincourt, South Africa (Aug 4, 2008-Feb 27, 2009); Iganga-Mayuge, Uganda (Feb 2, 2009-Oct 30, 2009); Ifakara, Tanzania (May 4, 2009-Dec 31, 2009); and Kintampo, Ghana (Aug 2, 2010-April 29, 2011). We used a three-stage screening process to identify people with active convulsive epilepsy. Prevalence was estimated as the ratio of confirmed cases to the population screened and was adjusted for sensitivity and attrition between stages. For each case, an age-matched control individual was randomly selected from the relevant centre's census database. Fieldworkers masked to the status of the person they were interviewing administered questionnaires to individuals with active convulsive epilepsy and control individuals to assess sociodemographic variables and historical risk factors (perinatal events, head injuries, and diet). Blood samples were taken from a randomly selected subgroup of 300 participants with epilepsy and 300 control individuals from each centre and were screened for antibodies to Toxocara canis, Toxoplasma gondii, Onchocerca volvulus, Plasmodium falciparum, Taenia solium, and HIV. We estimated odds ratios (ORs) with logistic regression, adjusted for age, sex, education, employment, and marital status. RESULTS: 586,607 residents in the study areas were screened in stage one, of whom 1711 were diagnosed as having active convulsive epilepsy. Prevalence adjusted for attrition and sensitivity varied between sites: 7·8 per 1000 people (95% CI 7·5-8·2) in Kilifi, 7·0 (6·2-7·4) in Agincourt, 10·3 (9·5-11·1) in Iganga-Mayuge, 14·8 (13·8-15·4) in Ifakara, and 10·1 (9·5-10·7) in Kintampo. The 1711 individuals with the disorder and 2032 control individuals were given questionnaires. In children (aged <18 years), the greatest relative increases in prevalence were associated with difficulties feeding, crying, or breathing after birth (OR 10·23, 95% CI 5·85-17·88; p<0·0001); abnormal antenatal periods (2·15, 1·53-3·02; p<0·0001); and head injury (1·97, 1·28-3·03; p=0·002). In adults (aged ≥18 years), the disorder was significantly associated with admission to hospital with malaria or fever (2·28, 1·06-4·92; p=0·036), exposure to T canis (1·74, 1·27-2·40; p=0·0006), exposure to T gondii (1·39, 1·05-1·84; p=0·021), and exposure to O volvulus (2·23, 1·56-3·19; p<0·0001). Hypertension (2·13, 1·08-4·20; p=0·029) and exposure to T solium (7·03, 2·06-24·00; p=0·002) were risk factors for adult-onset disease. INTERPRETATION: The prevalence of active convulsive epilepsy varies in sub-Saharan Africa and that the variation is probably a result of differences in risk factors. Programmes to control parasitic diseases and interventions to improve antenatal and perinatal care could substantially reduce the prevalence of epilepsy in this region
    corecore