14 research outputs found

    Enzyme immobilisation on wood-derived cellulose scaffolds via carbohydrate-binding module fusion constructs

    Get PDF
    Enzyme-CBM fusion constructs immobilised on wood-derived cellulose scaffolds: a sustainable approach for continuous flow biocatalysi

    The translational value of non-human primates in preclinical research on infection and immunopathology

    No full text
    The immune system plays a central role in the defense against environmental threats - such as infection with viruses, parasites or bacteria - but can also be a cause of disease, such as in the case of allergic or autoimmune disorders. In the past decades the impressive development of biotechnology has provided scientists with biological tools for the development of highly selective treatments for the different types of disorders. However, despite some clear successes the translation of scientific discoveries into effective treatments has remained challenging. The often-disappointing predictive validity of the preclinical animal models that are used in the selection of the most promising vaccine or drug candidates is the Achilles heel in the therapy development process. This publication summarizes the relevance and usage of non-human primates as pre-clinical model in infectious and autoimmune diseases, in particular for biologicals, which due to their high species-specificity are inactive in lower species. (C) 2015 Elsevier B.V. All rights reserved

    An unusual strategy for the anoxic biodegradation of phthalate

    No full text
    International audienceIn the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and ‘Aromatoleum’. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested
    corecore