709 research outputs found

    High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.

    Get PDF
    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Evolution of Chagas’ disease in Brazil. Epidemiological perspective and challenges for the future: a critical review

    Get PDF
    Aims: This paper aimed to provide a critical review of the evolution of Chagas’ disease in Brazil, its magnitude, historical development and management, and challenges for the future. Methods: A literature search was performed using PubMed, SciELO and Google Scholar and throughout collected articles’ references. Narrative analysis was structured around five main themes identified: vector transmission, control program, and transfusion, oral and congenital transmission. Results: In Brazil, the Chagas’ disease Control Program was fully implemented in the 1980s, when it reached practically all the endemic areas, and in 1991, the Southern Cone Initiative was created, aiming to eliminate the disease transmission through eliminating the Triatoma infestans and controlling blood banks. As a result, the prevalence of chagasic donors in blood banks reduced from 4.4% in the 80s to 0.2% in 2005. In 2006, PAHO certified the interruption of transmission of Chagas’ disease through this vector in Brazil. However, there are still challenges, such as the domiciliation of new vector species, the need for medical care of the infected individuals, the prevention of alternative mechanisms of transmission, the loss of political concern regarding the disease and, the weakening of the control program. Conclusion: Despite the progress towards control, there are still many challenges ahead to maintain and expand such control and minimise the risk of re-emergence

    Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    Get PDF
    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26±32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product

    Aneuploidy in pluripotent stem cells and implications for cancerous transformation

    Get PDF
    Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation

    Natural course of behavioral addictions: A 5-year longitudinal study

    Get PDF
    BACKGROUND: Resolving the theoretical controversy on the labeling of an increasing number of excessive behaviors as behavioral addictions may also be facilitated by more empirical data on these behavioral problems. For instance, an essential issue to the classification of psychiatric disorders is information on their natural course. However, longitudinal research on the chronic vs. episodic nature of behavioral addictions is scarce. The aim of the present study, therefore, was to provide data on prevalence, substance use comorbidity, and five-year trajectories of six excessive behaviors—namely exercising, sexual behavior, shopping, online chatting, video gaming, and eating. METHODS: Analyses were based on the data of the Quinte Longitudinal Study, where a cohort of 4,121 adults from Ontario, Canada was followed for 5 years (2006 to 2011). The response rate was 21.3%, while retention rate was 93.9%. To assess the occurrence of each problem behavior, a single self-diagnostic question asked people whether their over-involvement in the behavior had caused significant problems for them in the past 12 months. To assess the severity of each problem behavior reported, the Behavioral Addiction Measure was administered. A mixed design ANOVA was used to investigate symptom trajectories over time for each problem behavior and whether these symptom trajectories varied as a function of sex. RESULTS: The large majority of people reported having problematic over-involvement for just one of these behaviors and just in a single time period. A main effect of time was found for each problem behavior, indicating a moderately strong decrease in symptom severity across time. The time x sex interaction was insignificant in each model indicating that the decreasing trend is similar for males and females. The data also showed that help seeking was very low in the case of excessive sexual behavior, shopping, online chatting, and video gaming but substantially more prevalent in the case of excessive eating and exercising. CONCLUSIONS: The present results indicate that self-identified excessive exercising, sexual behavior, shopping, online chatting, video gaming, and/or eating tend to be fairly transient for most people. This aspect of the results is inconsistent with conceptualizations of addictions as progressive in nature, unless treated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12888-015-0383-3) contains supplementary material, which is available to authorized users

    Against Modern Football: Mobilising Protest Movements in Social Media

    Get PDF
    Recent debates in sociology consider how Internet communications might catalyse leaderless, open-ended, affective social movements that broaden support and bypass traditional institutional channels to create change. We extend this work into the field of leisure and lifestyle politics with an empirical study of Internet-mediated protest movement, Stand Against Modern Football. We explain how social media facilitate communications that transcend longstanding rivalries, and engender shared affective frames that unite diverse groups against corporate logics. In examining grassroots organisation, communication and protest actions that span online and urban locations, we discover sustained interconnectedness with traditional social movements, political parties, the media and the corporate targets of protests. Finally, we suggest that Internet-based social movements establish stable forms of organisation and leadership at these networked intersections in order to advance instrumental programmes of change

    Status and Potential of Single-cell Transcriptomics for Understanding Plant Development and Functional Biology

    Get PDF
    Funding Information University of Western Australia Acknowledgments The authors would like to extend sincere thanks to Robert Salomon for inspiring to write this manuscript. Resources were provided by The University of Western Australia.Peer reviewedPostprin
    corecore