84 research outputs found

    Metabolic Stress Responses in Drosophila Are Modulated by Brain Neurosecretory Cells That Produce Multiple Neuropeptides

    Get PDF
    In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells

    The problematic use of Information and Communication Technologies (ICT) in adolescents by the cross sectional JOITIC study

    Get PDF
    Background: The emerging field of Information and Communications Technology (ICT) has brought about new interaction styles. Its excessive use may lead to addictive behaviours. The objective is to determine the prevalence of the problematic use of ICT such as Internet, mobile phones and video games, among adolescents enrolled in mandatory Secondary Education (ESO in Spanish) and to examine associated factors. Methods: Cross sectional, multi-centric descriptive study. Population: 5538 students enrolled in years one to four of ESO at 28 schools in the Vallès Occidental region (Barcelona, Spain). Data collection: self-administered socio-demographic and ICT access questionnaire, and validated questionnaires on experiences related to the use of the Internet, mobile phones and video games (CERI, CERM, CERV). Results: Questionnaires were collected from 5,538 adolescents between the ages of 12 and 20 (77.3 % of the total response), 48.6 % were females. Problematic use of the Internet was observed in 13.6 % of the surveyed individuals; problematic use of mobile phones in 2.4 % and problematic use in video games in 6.2 %. Problematic Internet use was associated with female students, tobacco consumption, a background of binge drinking, the use of cannabis or other drugs, poor academic performance, poor family relationships and an intensive use of the computer. Factors associated with the problematic use of mobile phones were the consumption of other drugs and an intensive use of these devices. Frequent problems with video game use have been associated with male students, the consumption of other drugs, poor academic performance, poor family relationships and an intensive use of these games. Conclusions: This study offers information on the prevalence of addictive behaviours of the Internet, mobile phones and video game use. The problematic use of these ICT devices has been related to the consumption of drugs, poor academic performance and poor family relationships. This intensive use may constitute a risk marker for ICT addictio

    Regulation of the vapBC-1 Toxin-Antitoxin Locus in Nontypeable Haemophilus influenzae

    Get PDF
    Nontypeable Haemophilus influenzae (NTHi) are human-adapted commensal bacteria that can cause a number of chronic mucosal infections, including otitis media and bronchitis. One way for these organisms to survive antibiotic therapy and cause recurrent disease is to stop replicating, as most antimicrobials target essential biosynthetic pathways. Toxin-antitoxin (TA) gene pairs have been shown to facilitate entry into a reversible bacteriostatic state. Characteristically, these operons encode a protein toxin and an antitoxin that associate following translation to form a nontoxic complex, which then binds to and regulates the cognate TA promoter. Under stressful conditions, the labile antitoxin is degraded and the complex disintegrates, freeing the stable toxin to facilitate growth arrest. How these events affected the regulation of the TA locus, as well as how the transcription of the operon was subsequently returned to its normal state upon resumption of growth, was not fully understood. Here we show that expression of the NTHi vapBC-1 TA locus is repressed by a complex of VapB-1 and VapC-1 under conditions favorable for growth, and activated by the global transactivator Factor for Inversion Stimulation (Fis) upon nutrient upshift from stationary phase. Further, we demonstrate for the first time that the VapC-1 toxin alone can bind to its cognate TA locus control region and that the presence of VapB-1 directs the binding of the VapBC-1 complex in the transcriptional regulation of vapBC-1

    Neuroarchitecture of Peptidergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster

    Get PDF
    Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 “coordinates” of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks

    Insulin Production and Signaling in Renal Tubules of Drosophila Is under Control of Tachykinin-Related Peptide and Regulates Stress Resistance

    Get PDF
    The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone

    Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution

    Get PDF
    Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis

    Reducing the rate and duration of Re-ADMISsions among patients with unipolar disorder and bipolar disorder using smartphone-based monitoring and treatment -- the RADMIS trials: study protocol for two randomized controlled trials

    Get PDF
    Abstract Background Unipolar and bipolar disorder combined account for nearly half of all morbidity and mortality due to mental and substance use disorders, and burden society with the highest health care costs of all psychiatric and neurological disorders. Among these, costs due to psychiatric hospitalization are a major burden. Smartphones comprise an innovative and unique platform for the monitoring and treatment of depression and mania. No prior trial has investigated whether the use of a smartphone-based system can prevent re-admission among patients discharged from hospital. The present RADMIS trials aim to investigate whether using a smartphone-based monitoring and treatment system, including an integrated clinical feedback loop, reduces the rate and duration of re-admissions more than standard treatment in unipolar disorder and bipolar disorder. Methods The RADMIS trials use a randomized controlled, single-blind, parallel-group design. Patients with unipolar disorder and patients with bipolar disorder are invited to participate in each trial when discharged from psychiatric hospitals in The Capital Region of Denmark following an affective episode and randomized to either (1) a smartphone-based monitoring system including (a) an integrated feedback loop between patients and clinicians and (b) context-aware cognitive behavioral therapy (CBT) modules (intervention group) or (2) standard treatment (control group) for a 6-month trial period. The trial started in May 2017. The outcomes are (1) number and duration of re-admissions (primary), (2) severity of depressive and manic (only for patients with bipolar disorder) symptoms; psychosocial functioning; number of affective episodes (secondary), and (3) perceived stress, quality of life, self-rated depressive symptoms, self-rated manic symptoms (only for patients with bipolar disorder), recovery, empowerment, adherence to medication, wellbeing, ruminations, worrying, and satisfaction (tertiary). A total of 400 patients (200 patients with unipolar disorder and 200 patients with bipolar disorder) will be included in the RADMIS trials. Discussion If the smartphone-based monitoring system proves effective in reducing the rate and duration of re-admissions, there will be basis for using a system of this kind in the treatment of unipolar and bipolar disorder in general and on a larger scale. Trial registration ClinicalTrials.gov, ID: NCT03033420 . Registered 13 January 2017. Ethical approval has been obtained

    A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, <it>snpf</it>, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the <it>snpf </it>gene and its peptide products in the central nervous system (CNS) of <it>Drosophila </it>in relation to other neuronal markers.</p> <p>Results</p> <p>There are several hundreds of neurons in the larval CNS and several thousands in the adult <it>Drosophila </it>brain expressing <it>snpf </it>transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7).</p> <p>Conclusion</p> <p>It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.</p

    Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    Get PDF
    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress

    Regulation of the Escherichia coli HipBA Toxin-Antitoxin System by Proteolysis

    Get PDF
    Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon- background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence
    corecore