88 research outputs found

    New Neighbours: Modelling the Growing Population of Gamma-ray Millisecond Pulsars

    Get PDF
    The Fermi Large Area Telescope, in collaboration with several groups from the radio community, have had marvellous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.Comment: 4 pages, 2 figures, proceedings of the ICREA Workshop on The High-Energy Emission from Pulsars and their Systems (HEEPS), Sant Cugat, Spai

    Gamma-rays from millisecond pulsars in Globular Clusters

    Full text link
    Globular clusters (GCs) with their ages of the order of several billion years contain many final products of evolution of stars such as: neutron stars, white dwarfs and probably also black holes. These compact objects can be at present responsible for the acceleration of particles to relativistic energies. Therefore, gamma-ray emission is expected from GCs as a result of radiation processes occurring either in the inner magnetosperes of millisecond pulsars or in the vicinity of accreting neutron stars and white dwarfs or as a result of interaction of particles leaving the compact objects with the strong radiation field within the GC. Recently, GeV gamma-ray emission has been detected from several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes reported interesting upper limits at the TeV energies which start to constrain the content of GCs. We review the results of these gamma-ray observations in the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space Science Series (Springer), eds. N. Rea and D.F. Torre

    Lepton Acceleration in Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair winds emanating from within the pulsar light cylinder. Their radiative dissipation in various wavebands is significantly different from that of their pulsar central engines: the broadband spectra of PWNe possess characteristics distinct from those of pulsars, thereby demanding a site of lepton acceleration remote from the pulsar magnetosphere. A principal candidate for this locale is the pulsar wind termination shock, a putatively highly-oblique, ultra-relativistic MHD discontinuity. This paper summarizes key characteristics of relativistic shock acceleration germane to PWNe, using predominantly Monte Carlo simulation techniques that compare well with semi-analytic solutions of the diffusion-convection equation. The array of potential spectral indices for the pair distribution function is explored, defining how these depend critically on the parameters of the turbulent plasma in the shock environs. Injection efficiencies into the acceleration process are also addressed. Informative constraints on the frequency of particle scattering and the level of field turbulence are identified using the multiwavelength observations of selected PWNe. These suggest that the termination shock can be comfortably invoked as a principal injector of energetic leptons into PWNe without resorting to unrealistic properties for the shock layer turbulence or MHD structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    MSSM in view of PAMELA and Fermi-LAT

    Full text link
    We take the MSSM as a complete theory of low energy phenomena, including neutrino masses and mixings. This immediately implies that the gravitino is the only possible dark matter candidate. We study the implications of the astrophysical experiments such as PAMELA and Fermi-LAT, on this scenario. The theory can account for both the realistic neutrino masses and mixings, and the PAMELA data as long as the slepton masses lie in the 500−106500-10^6 TeV range. The squarks can be either light or heavy, depending on their contribution to radiative neutrino masses. On the other hand, the Fermi-LAT data imply heavy superpartners, all out of LHC reach, simply on the grounds of the energy scale involved, for the gravitino must weigh more than 2 TeV. The perturbativity of the theory also implies an upper bound on its mass, approximately 6−76-7 TeV.Comment: Published version, figures update

    Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope

    Full text link
    We report on the search for 0.1-10 GeV emission from magnetars in 17 months of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently-known magnetars is found. The most stringent upper limits to date on their persistent emission in the Fermi-LAT energy range are estimated between ~10^{-12}-10^{-10} erg/s/cm2, depending on the source. We also searched for gamma-ray pulsations and possible outbursts, also with no significant detection. The upper limits derived support the presence of a cut-off at an energy below a few MeV in the persistent emission of magnetars. They also show the likely need for a revision of current models of outer gap emission from strongly magnetized pulsars, which, in some realizations, predict detectable GeV emission from magnetars at flux levels exceeding the upper limits identified here using the Fermi-LAT observations.Comment: ApJ Letters in press; Corresponding authors: Caliandro G. A., Hadasch D., Rea N., Burnett

    Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi

    Full text link
    We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter

    Fermi Gamma-ray Imaging of a Radio Galaxy

    Get PDF
    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton scattered relic radiation from the cosmic microwave background (CMB), with additional contribution at higher energies from the infrared-to-optical extragalactic background light (EBL). These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, and a promising method to probe the cosmic relic photon fields.Comment: 27 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s−1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    Nanotechnology and global energy demand: challenges and prospects for a paradigm shift in the oil and gas industry.

    Get PDF
    The exploitation of new hydrocarbon discoveries in meeting the present global energy demand is a function of the availability and application of new technologies. The relevance of new technologies is borne out of the complex subsurface architecture and conditions of offshore petroleum plays. Conventional techniques, from drilling to production, for exploiting these discoveries may require adaption for such subsurface conditions as they fail under conditions of high pressure and high temperature. The oil and gas industry over the past decades has witnessed increased research into the use of nanotechnology with great promise for drilling operations, enhanced oil recovery, reservoir characterization, production, etc. The prospect for a paradigm shift towards the application of nanotechnology in the oil and gas industry is constrained by evolving challenges with its progression. This paper gave a review of developments from nano-research in the oil and gas industry, challenges and recommendations
    • 

    corecore