23 research outputs found

    Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components

    Get PDF
    Gold nanoparticles (AuNPs) are a popular choice for use in medical and biomedical research applications. With suitable functionalisation AuNPs can be applied in drug delivery systems, or can aid in disease diagnosis. One such functionalisation is with chitosan, which enables efficient interaction and permeation of cellular membranes, providing an effective adjuvant. As both AuNPs and chitosan have been shown to have low toxicity and high biocompatibility their proposed use in nanomedicine, either individually or combined, is expanding. However, further toxicological and immunological assessments of AuNP-chitosan conjugates are still needed. Therefore, we have evaluated how AuNP functionalisation with chitosan can affect uptake, cytotoxicity, and immunological responses within mononuclear cells, and influence the interaction of AuNPs with biomolecules within a complex biofluid. The AuNPs used were negatively charged through citrate-coating, or presented either low or high positive charge through chitosan-functionalisation. Uptake by THP-1 cells was assessed via transmission electron microscopy and electron energy loss spectroscopy, pro-inflammatory responses by ELISA and qRT-PCR, and cell death and viability via lactate dehydrogenase release and mitochondrial activity, respectively. Interactions of AuNPs with protein components of a frequently used in vitro cell culture medium supplement, foetal calf serum, were investigated using mass spectrometry. Although cells internalised all AuNPs, uptake rates and specific routes of intracellular trafficking were dependent upon chitosan-functionalisation. Accordingly, an enhanced immune response was found to be chitosan-functionalisation-dependent, in the form of CCL2, IL-1β, TNF-α and IL-6 secretion, and expression of IL - 1β and NLRP3 mRNA. A corresponding increase in cytotoxicity was found in response to chitosan-coated AuNPs. Furthermore, chitosan-functionalisation was shown to induce an increase in unique proteins associating with these highly charged AuNPs. It can be concluded that functionalisation of AuNPs with the perceived non-toxic biocompatible molecule chitosan at a high density can elicit functionalisation-dependent intracellular trafficking mechanisms and provoke strong pro-inflammatory conditions, and that a high affinity of these NP-conjugates for biomolecules may be implicit in these cellular responses. The online version of this article (doi:10.1186/s12951-015-0146-9) contains supplementary material, which is available to authorized users

    Characterization of histone-related chemical modifications in formalin-fixed paraffin-embedded and fresh-frozen human pancreatic cancer xenografts using LC-MS/MS

    No full text
    Post-translational modifications (PTMs) of histones including acetylation, methylation, and ubiquitination are known to be involved in the epigenetic regulation of gene expression and thus can have an important role in tumorigenesis. A number of PTMs have been linked to pancreatic cancer and are frequently studied as potential targets for cancer therapy or diagnosis. The availability of biobank-stored, formalin-fixed, paraffin-embedded (FFPE) materials and advanced proteomic analytical tools make it possible to detect histone-related PTMs using predicted mass shifts caused by specific modification. It is, however, important to take into account the fact that formaldehyde (FA) present in the FFPE material is chemically reactive and may undergo condensation reactions, for example, with terminal amino groups and active CH functionalities of the studied proteins. As supported by the results of this study, the possibility to misinterpret such protein condensation product as endogenous PTMs should be taken into consideration in all proteomic analytical work involving FFPE materials. In this study, we used liquid chromatography-tandem mass spectrometry to assess preassumed modification of the lysine residues of histone proteins in FFPE or fresh-frozen (FF) tumor xenografts, derived from the human pancreatic cancer cell line, Capan-1. Here we report modifications with a defined mass shift of +14.016, +28.031, +42.011, or +114.043 Da, corresponding to apparent methylation, dimethylation, acetylation, or ubiquitination that were differentially distributed between the groups. The identified modifications were significantly more frequent in FFPE samples as compared with FF samples. Our results indicate that FFPE tissue processing may result in persistent chemical modifications of histones, which correspond in mass shift of important PTMs. Herein, we highlight the importance to investigate and report FA-formed modifications in FFPE-treated tissues, as well as the necessity of careful manual examination of observed modifications to eliminate false-positive PTMs

    Histone profiling reveals the H1.3 histone variant as a prognostic biomarker for pancreatic ductal adenocarcinoma

    No full text
    Background: Epigenetic alterations have been recognized as important contributors to the pathogenesis of PDAC. However, the role of histone variants in pancreatic tumor progression is still not completely understood. The aim of this study was to explore the expression and prognostic significance of histone protein variants in PDAC patients. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for qualitative analysis of histone variants and histone related post-translational modifications (PTMs) in PDAC and normal pancreatic tissues. Survival analysis was conducted using the Kaplan-Meier method and Cox proportional hazards regression. Results: Histone variant H1.3 was found to be differentially expressed (p = 0.005) and was selected as a PDAC specific histone variant candidate. The prognostic role of H1.3 was evaluated in an external cohort of patients with resected PDAC using immunohistochemistry. Intratumor expression of H1.3 was found to be an important risk factor for overall survival in PDAC, with an adjusted HR value of 2.6 (95% CI 1.1-6.1), p = 0.029. Conclusion: We suggest that the intratumor histone H1.3 expression as reported herein, may serve as a new epigenetic biomarker for PDAC

    Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker

    No full text
    Background: Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods: A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results: In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09-14.3; P = 0.037). Conclusion: Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma

    Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with "short" survival ( 45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P < 0.05; or different detection frequencies (≥5 samples)] in patients with "short" survival (including GLUT1) and "long" survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing "activated stroma factors" and "basal tumor factors" to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with "short" survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with "long" survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC

    Proteomics / Workflows for automated downstream data analysis and visualization in large-scale computational mass spectrometry

    Get PDF
    MS-based proteomics and metabolomics are rapidly evolving research fields driven by the development of novel instruments, experimental approaches, and analysis methods. Monolithic analysis tools perform well on single tasks but lack the flexibility to cope with the constantly changing requirements and experimental setups. Workflow systems, which combine small processing tools into complex analysis pipelines, allow custom-tailored and flexible data-processing workflows that can be published or shared with collaborators. In this article, we present the integration of established tools for computational MS from the open-source software framework OpenMS into the workflow engine Konstanz Information Miner (KNIME) for the analysis of large datasets and production of high-quality visualizations. We provide example workflows to demonstrate combined data processing and visualization for three diverse tasks in computational MS: isobaric mass tag based quantitation in complex experimental setups, label-free quantitation and identification of metabolites, and quality control for proteomics experiments.(VLID)221512

    Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics

    No full text
    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 lM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity.JRC.I.1-Chemical Assessment and Testin

    Causal Modeling of Cancer-Stromal Communication Identifies PAPPA as a Novel Stroma-Secreted Factor Activating NFκB Signaling in Hepatocellular Carcinoma

    Get PDF
    Inter-cellular communication with stromal cells is vital for cancer cells. Molecules involved in the communication are potential drug targets. To identify them systematically, we applied a systems level analysis that combined reverse network engineering with causal effect estimation. Using only observational transcriptome profiles we searched for paracrine factors sending messages from activated hepatic stellate cells (HSC) to hepatocellular carcinoma (HCC) cells. We condensed these messages to predict ten proteins that, acting in concert, cause the majority of the gene expression changes observed in HCC cells. Among the 10 paracrine factors were both known and unknown cancer promoting stromal factors, the former including Placental Growth Factor (PGF) and Periostin (POSTN), while Pregnancy-Associated Plasma Protein A (PAPPA) was among the latter. Further support for the predicted effect of PAPPA on HCC cells came from both in vitro studies that showed PAPPA to contribute to the activation of NFκB signaling, and clinical data, which linked higher expression levels of PAPPA to advanced stage HCC. In summary, this study demonstrates the potential of causal modeling in combination with a condensation step borrowed from gene set analysis [Model-based Gene Set Analysis (MGSA)] in the identification of stromal signaling molecules influencing the cancer phenotype

    Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics

    No full text
    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2μM) in a daily repeat dose treating regime for up to 14days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity

    MOESM5 of Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components

    No full text
    Additional file 5. Immune response of THP-1 cells to NP solvents. Secretion of CCL2 (A-C), TNF-α (D-F), IL-6 (G-I) and IL-1ß (J-L) from PMA-stimulated cells, in response to sodium citrate (2.2 mM stock) or chitosan (0.1 % stock) at dilutions relevant to AuNP exposures; 1 ng/ml LPS was used for co-stimulation; with 1 and 100 ng/ml LPS for controls; results are expressed as cytokine release in pg/ml, R = 3, and each data point represents the mean ± SEM
    corecore