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Abstract

Inter-cellular communication with stromal cells is vital for cancer cells. Molecules involved in
the communication are potential drug targets. To identify them systematically, we applied a
systems level analysis that combined reverse network engineering with causal effect esti-
mation. Using only observational transcriptome profiles we searched for paracrine factors
sending messages from activated hepatic stellate cells (HSC) to hepatocellular carcinoma
(HCC) cells. We condensed these messages to predict ten proteins that, acting in concert,
cause the majority of the gene expression changes observed in HCC cells. Among the 10
paracrine factors were both known and unknown cancer promoting stromal factors, the for-
mer including Placental Growth Factor (PGF) and Periostin (POSTN), while Pregnancy-As-
sociated Plasma Protein A (PAPPA) was among the latter. Further support for the predicted
effect of PAPPA on HCC cells came from both in vitro studies that showed PAPPA to con-
tribute to the activation of NFkB signaling, and clinical data, which linked higher expression
levels of PAPPA to advanced stage HCC. In summary, this study demonstrates the poten-
tial of causal modeling in combination with a condensation step borrowed from gene set
analysis [Model-based Gene Set Analysis (MGSA)] in the identification of stromal signaling
molecules influencing the cancer phenotype.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004293 May 28, 2015

1/22


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004293&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/

@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Causal Modeling Identifies PAPPA as NFkB Activator in HCC

The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Author Summary

All living cells rely on communication with other cells to ensure their function and surviv-
al. Molecular signals are sent among cells of the same cell type and from cells of one cell
type to another. In cancer, not only the cancer cells themselves are responsible for the ma-
lignancy, but also stromal (non-cancerous) cells and the molecular signals they send to
cancer cells are important factors that determine the severity and outcome of the disease.
Therefore, the identification of stromal signals and their influence on cancer cells is impor-
tant for the development of novel treatment strategies. With a computational systems biol-
ogy model of stroma-cancer cell communication, we have compiled a set of ten proteins
secreted by stromal cells that shape the cancer phenotype. Most importantly, our causal
analysis uncovered Pregnancy-Associated Plasma Protein A (PAPPA) as a novel paracrine
inducer of the pro-tumorigenic NFkB signaling pathway. In liver cancer patients, higher
levels of PAPPA protein indicate a more progressed tumor stage, confirming its clinical
relevance.

Introduction

Stromal tissue is a major component of solid tumors. It consists of extracellular matrix, connec-
tive tissue cells, inflammatory cells, and blood vessels. Stromal cells affect cancer development
and progression by augmenting tumor cell proliferation, survival, motility and invasion [1,2,3].
Tumor and stromal cells can interact through both, direct cell-cell contact and secreted factors
such as growth factors, cytokines, chemokines, and their cognate receptors [2,3].

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal malignant tumors
worldwide. The major risk factor predisposing to HCC is hepatic cirrhosis. It arises through
the activation of hepatic stellate cells (HSC), myofibroblast-like cells that are responsible for
the excessive hepatic matrix deposition seen in chronically damaged livers [4,5]. Moreover,
HSCs infiltrate the stroma of liver tumors localizing around tumor sinusoids, fibrous septa,
and capsules [4,1]. Conditioned medium collected from activated HSCs induces growth, mi-
gration and invasion of HCC cells in vitro [6,7,8,9]. Furthermore, HSCs promote aggressive
growth of HCC cells in experimental in vivo models [4,6,9,10] and their presence predicts poor
clinical outcome in HCC patients [11]. These data indicate that HSCs affect HCCs. Yet, the
molecular mechanisms of this crosstalk are largely unknown.

In functional assays, signaling pathways are analyzed through perturbation of the cellular
systems. Unlike statistical associations in observational data, functional assays can directly dis-
tinguish between cause and effect. Their disadvantage is that they can be difficult to perform in
high throughput.

Recently, Maathuis and colleagues introduced a novel method to extract causal information
from observational gene expression data [12]. In their IDA algorithm they combine local re-
verse network engineering using the PC-algorithm [13] with causal effect estimation [14,15].
These virtual functional assays predict lists of genes that will change expression if the expres-
sion of a query gene was perturbed experimentally. The method was successfully applied to
predict the expression profiles of yeast deletion strains from observational data of wild type
yeast only [16].

Here, we adapt the IDA framework to the problem of identifying agents of inter-cellular
communication. We combine a specific experimental design with tailored causal discovery and
data integration algorithms. In brief, HSCs obtained from n = 15 human donors were cultivat-
ed to generate conditioned media for stimulation of the established HCC cell line Hep3B. Gene
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expression was then measured in both, HSCs as well as stimulated and un-stimulated HCC
cells and a list of genes that change expression in HCCs upon stimulation was established.
First, we aimed at identifying gene pairs (x, y) where the expression of gene x in HSCs affects
the expression of gene y in HCC cells. Next, we searched for a small set of HSC expressed genes
that, together accounted for the majority of stimulation sensitive genes in HCC cells. This
yielded a set of 10 HSC genes predicted to jointly influence 120 of 227 HCC cell genes affected
by supernatant stimulation.

Results
HSCs regulate oncogenic pathways in HCC cells

To study cell communication directed from stroma to cancer cells, we treated the HCC cell line
Hep3B with 15 media conditioned by 24-hour cultivation with HSCs that had been isolated
from different human donors. This design allows us to study the messages sent from HSCs to
HCC cells independently from feedback messages that might be sent in the opposite direction
from HCC cells to HSCs. The lack of feedback in this design is an indispensable prerequisite
for our analytic approach.

Genome-wide gene expression was measured in both, donor HSCs and HCC cells stimulat-
ed with conditioned media (CM), yielding 15 pairs of gene expression profiles. The gene ex-
pression profiles of four un-stimulated HCC cell cultures served as controls. We identified a
list of 227 genes with more than two-fold expression changes between stimulated and un-stim-
ulated cells at an estimated false discovery rate (FDR) of 0.001. Interestingly, 30 (13.2%) of the
227 genes were among the top 200 genes with the highest variance in expression across the 15
stimulation assays (Fig 1). These genes reflect biological variation both across HSC donors and
cancer cells stimulated by the HSCs. The genes that drive HSC induced neoplastic progression,
including proliferation and migration in HCCs, are most likely among them [17]. In fact, test-
ing for overrepresented Gene Ontology terms [18] pointed to several hallmarks of cancer: neg-
ative regulation of apoptosis (anti-apoptosis, q < 10~*), angiogenesis (q < 10~*), inflammation
(cellular response to lipopolysaccharide, q < 10~*), positive regulation of cell migration
(q < 107%), and growth factor activity (transforming growth factor beta receptor signaling path-
way, q < 107)(S1 Fig).

Next, we searched for indications which pathways might be regulated by stromal signals in
HCC cells. The CM sensitive genes were mapped onto the BioGRID interactome of established
protein-protein and protein-gene interactions [19] and the largest regulated subnetwork was
identified by the BioNet algorithm [20]. The regulated network comprises several interacting
oncogenic signaling pathways including TGF-beta/SMAD3, NF«B, JAK1 and MAP kinase sig-
naling components (Fig 2). Another branch of the subnetwork can be attributed to anti-apo-
ptotic signals with the highly induced BIRC3 gene (ENSG00000023445) in its center.
Amplification of the chromosomal region containing BIRC3 exons is frequently found in HCC
and associated with chemotherapy resistance, metastasis and poor prognosis [21]. The stron-
gest induced gene, RNDI (log2 fold change of 4.9; ENSG00000172602), a member of the Rho
GTPase family [22], belongs to yet another branch of the subnetwork that comprises genes in-
volved in regulating rearrangements of the actin cytoskeleton and, thus, changes in cell adhe-
sion and motility in response to extracellular growth factors [23].

Causal modeling identifies HSC secreted proteins affecting HCC cells

So far, we have only described the HSC-mediated changes in the HCC cell transcriptome. We
have not yet identified the HSC secreted proteins that actually stimulate receptors or otherwise
directly interact with HCCs. In a naive analysis, we might find many genes in HSCs that correlate
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Fig 1. Differentially expressed genes with large variance across HCC samples. HCC cells were
stimulated with conditioned media from HSCs from 15 different human donors (Hep_1-Hep_15) while control
samples (ctrl1-4) were incubated with plain medium. Of the significant differentially expressed genes upon
incubation with conditioned media, only the ones with large variation across HCC samples are shown (for
details please see Material and Methods). Expression data was scaled to mean = 0 and standard

deviation = 1, such that negative values (blue) indicate lower expression in the sample compared to the mean
and positive values (yellow) higher expression in the sample compared to the mean.

doi:10.1371/journal.pcbi.1004293.g001

with some of the genes that are regulated in HCCs; however, most of them will not cause these
changes.

In fact, if we counted the number of HCC genes a particular HSC gene correlates with (abso-
lute Pearson correlation > 0.7), we would identify HSC-secreted POSTN (ENSG00000133110),
PGF (ENSG00000119630), CSF1 (ENSG00000184371), NPC2 (ENSG00000119655) and FGF5
(ENSG00000138675). The top 10 list also includes HGF (ENSG00000019991) and is shown in
S1 Table. Although this list points to potential stromal regulators, for some gene pairs correla-
tion will be high due to a third factor that influences both of the correlated genes. To exclude the
latter and to find true causal regulators instead, we use the “in silico perturbation framework” of
the IDA algorithm [12] to filter for genes that are operative in stroma-to-tumor communication.
Application of IDA comprises two steps. First, a partially directed network of regulatory interac-
tions is constructed using the PC algorithm [13]. Second, causal effects are estimated from this
network using Pearl’s Do-calculus [14]. To infer a potential effect of a stromal gene x on a can-
cer gene vy, the Do-calculus needs the expression of y, x, and all genes X’ that generate spurious
correlations between x and y (e.g. common regulators). Adjusting for the expression of the X’
(termed “parents of x”) differentiates between true causal effects and spurious correlations. If x
does not have parents in the network (e.g. x10 in Fig 3), the estimated causal effect is identical to
the correlation coefficient. However, if there are parents, causal effects are different from corre-
lation coefficients. In these cases interpreting correlation coefficients is misleading. Since HSCs
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Fig 2. HCC protein network regulated by HSCs. HSC-induced changes in HCC gene expression were mapped on the BioGRID interactome of protein-
protein and protein-gene interactions and the largest regulated sub-network was identified. Components of several oncogenic signaling pathways are
regulated, NFkB pathway members, TGF-beta/SMAD3 and Map-kinases. Moreover, anti-apoptosis (BIRC3) and motility-related (RND1) genes can be
found. Colors indicate logarithmic fold changes (base 2) of the genes upon conditioned media incubation. Red denotes repression; green induction of the

gene after incubation with HSC conditioned media.

doi:10.1371/journal.pcbi.1004293.g002

were never in contact with HCC cells, parent genes of x must be of HSC origin. Hence, it is suf-
ficient to confine the reconstruction of a regulatory network to the HSC expression profiles
only. An illustration of the HSC network is shown in Fig 3. To limit the computational burden
resulting from genes that are not expressed in HSCs or that did not vary across HSCs from
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Fig 3. Scheme of the HSC-HCC network used in causal modeling. The network consists of three types of
genes, cellular HSC genes (yellow), secreted HSC gene products (red) and HCC ‘target’ genes (blue).
Individual genes are represented by nodes. Black arrows indicate dependencies among genes that were
estimated from gene expression data. These can be directional, i.e. the expression level of a gene impacts
the expression level of another downstream gene; or un-directed, i.e. the causal gene could not be inferred.
Genes upstream of a particular gene are denoted as parents (e.g. x3 and x4 are parents of x8, and x3, x4, x7
and x8 are parents of x12). Secreted HSC gene products can be parents of other HSC genes. In contrast,
HCC genes were excluded in network estimation because they cannotimpact HSC genes in the chosen
experimental setup. Green dashed arrows indicate estimated causal effects of secreted HSC genes on HCC
cell genes. Causal effects that are stable across sub-sampling runs are reported, e.g. x10 has stable causal
effects ony1, y2 and y3, whereas x13 has no stable effect on any HCC gene.

doi:10.1371/journal.pcbi.1004293.9003

different donors, we only included the highest and most variably expressed genes (see Material
and Methods) across the HSC samples in the analysis. The expression levels of HCC cell genes
enter the model in the second step as y-genes, and the HSC network is used to derive causal ef-
tects of HSC on HCC genes (represented by green dashed arrows in Fig 3). For some genes, we
have two expression values: one from the HSC sample that produced the CM, and one from
the respective CM-stimulated HCC cell sample. For simplicity, we refer to these expression lev-
els as the expression of the HSC gene and the HCC gene, respectively. For each of the 227
HSC-inducible HCC genes, we used IDA to screen for potential HSC genes that—when per-
turbed in expression—will have strong effects on the respective HCC gene. We limited our
search for candidate HSC regulators to genes annotated as ‘secreted’, ‘extracellular’ or ‘intercel-
lular’, but not ‘receptor’ by Gene Ontology and for which the gene product was detected in the
conditioned media by HPLC/MS/MS. Gene products that are too small for detection, e.g. IGF1
(ENSG00000017427) and IGF2 (ENSG00000167244) were left in the analysis. This resulted in
a final list of 186 HSC genes as candidate stromal regulators. The gene list with corresponding
proteins can be found in S2 Table. Gene-pair-by-gene-pair, the HSC gene was “virtually re-
pressed” by one standard unit and the expected change of the HCC gene was calculated. It is
important to note that causal analysis will discover both direct and indirect effects of x on y, i.e.
irrespective of potential mediators m, and discover effects of x and m if they are both secreted
HSC genes. For example, in Fig 3, x10 has a causal effect on y3, although mediator node x11
also has a causal effect on y3. To be robust against small perturbations of the data, the "virtual
repression” was run in a sub-sampling mode, repeating the experiment 100 times each on a dif-
ferent subset of the samples. Within each run, secreted HSC genes were ranked by the size of
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Fig 4. Overview of the experimental and computational approach to identify secreted factors of HSCs regulating HCC gene expression.
Conditioned medium of primary human HSC (n = 15) was transferred onto human Hep3B HCC cells. Gene expression data of HSC and HCC cells were
filtered to reduce the dimensionality of the data and to build cause-and-effect (target) matrices. These served as input for the IDA algorithm which estimates
causal effects for each cause on each target gene. Causal effects that were stable across sub-sampling runs (i.e. that were stable with respect to small
perturbations of the data) were retained and subjected to Model-based Gene Set Analysis (MGSA) to extract a sparse set of HSC genes influencing HCC cell

gene expression.

doi:10.1371/journal.pcbi.1004293.9004

their estimated effects on the 227 target HCC genes. We kept causal effects only if they ap-
peared in the top ranks across the majority of sub-sampling runs (see Material and Methods).
This resulted in 96 HSC genes potentially regulating at least one of the 227 HCC genes. A flow-
chart of our methodology is depicted in Fig 4.

A small set of HSC secreted proteins can activate HCC cells in concert

Although all 186 HSC proteins have the potential to affect the expression of HCC genes, we
postulate that a much smaller set of proteins is sufficient to activate HCCs. Thus we aimed at
identifying a small set of HSC genes that jointly account for the wide spectrum of expression
changes in HCC cells observed in response to stimulation with HSC-CMs. We have generated
227 lists of HSC regulators, one for each of the 227 CM sensitive HCC genes. Since many HSC
genes were predicted to affect multiple HCC genes, these lists overlap. The lists can be reorga-
nized by HSC genes instead of HCC genes. This resulted in 96 non-empty sets of HCC genes
that are targeted by the same HSC gene.

Model based gene set analysis [24] (MGSA) is an algorithm that aims at partially covering
an input list of genes with as little gene ontology categories as possible. It balances the coverage
with the number of categories needed. We modified this algorithm in such a way that it covered
the list of 227 CM sensitive HCC genes with the 96 sets of HSC targets. This strategy identified
sparse lists of predicted targets that covered most of the observed targets. By definition, every
list corresponded to one secreted HSC protein. This analysis brings HSC genes in competition
to each other: an analysis based on frequencies (how many HCC genes does each HSC gene af-
fect) discovers redundant HSC genes that target the same HCC genes. Our approach strives for
a maximum coverage of the target genes with a minimum number of HSC secreted genes.

Both stability selection on the IDA algorithm and MGSA depend on the setting of a few pa-
rameters. Several studies have shown that hepatocellular growth factor (HGF) affects HCC
cells [25], and is highly expressed in HSCs [25,26]. We exploited this knowledge and calibrated
the parameters such that HGF appeared in the list of predicted HSC genes.
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With these parameters, we identified 10 HSC secreted proteins. In addition to HGF the list
included PGF, CXCL1, PAPPA, IGF2, IGFBP2, POSTN, NPC2, CTSB, and CSF1 (Table 1).
With the exception of IGF2 all proteins were found in at least one of five CMs that were ana-
lyzed using LC/MS/MS. IGF2 is too small for successful detection [27]. Notably, the set of the
most influential HSC regulators included several well-known tumor-promoting genes such as
placental growth factor (PGF) [28], and the chemokine CXCL1, which promotes HCC angio-
genesis and growth [29]. Periostin (POSTN) is a secreted cell adhesion protein whose expres-
sion levels are directly related to metastatic potential and poor prognosis of HCC [30]. High
expression levels of the macrophage colony-stimulating factor 1 (CSF1) are another indicator
of tumor progression and poor survival in HCC patients [31]. Over-expression of cathepsin B
(CTSB), on the other hand, promotes HCC cell migration and invasion [32].

The role of Niemann-Pick Type C2 (NPC2) protein in cancer is just beginning to be under-
stood. NPC2 regulates intracellular cholesterol homeostasis via direct binding with free choles-
terol. Perturbations of cholesterol metabolism affect cancer progression [33]. Elevated serum
levels of NPC2 have been observed in patients with lung cancer [34] and, more recently, HCC
[35]. Modulation of cholesterol homeostasis by NPC2 also affects activation of mammalian tar-
get of rapamycin (mTOR) [36], a critical signaling cascade in several types of cancer including
HCC [37].

Remarkably, we identified three genes of the insulin-like growth factor (IGF) axis. This sig-
naling pathway regulates tumor progression in several types of tumors including HCC [38].
The key molecules in this pathway are the ligands IGF1 and IGF2, IGF-binding proteins
(IGFBPs), and membrane-associated receptors (IGF-I receptor (IGF-IR), mannose-6-phos-
phate receptor/IGF-II receptor (IGF-IIR)). High expression levels of IGF2 are predictive of ag-
gressive tumor growth and poor prognosis in HCC patients [39]. IGF2 binds to the receptor
tyrosine kinases IGF1R (ENSG00000140443) and IGF2R (ENSG00000197081) on HCC cells
and activates multiple intracellular signaling pathways, including the phosphatidylinositide-3'-
kinase (PI3K)/Akt and MAP kinase signaling cascades [40]. IGFBPs bind to IGFs with higher
affinity than IGF-receptors and, thereby, modulate local IGF concentrations and activities
[40,41]. Unlike most IGFBP family members, which conduct antitumor activity, IGFBP2 pro-
motes invasion, metastasis, and angiogenesis [41]. It is over-expressed in several tumor tissues
including HCC [41,42].

Table 1. Most influential stromal regulators.

symbol ensembl gene ID description set size probability
PGF ENSG00000119630 placental growth factor 36 1
CXCL1 ENSG00000163739 chemokine (C-X-C motif) ligand 1 12 0.9951
POSTN ENSG00000133110 periostin, osteoblast specific factor 25 0.9927
IGF2 ENSG00000167244 insulin-like growth factor 2 10 0.9864
PAPPA ENSGO00000182752 pregnancy-associated plasma protein A, pappalysin 1 9 0.9856
IGFBP2 ENSGO00000115457 insulin-like growth factor binding protein 2, 36kDa 14 0.9843
CTSB ENSG00000164733 cathepsin B 20 0.9501
NPC2 ENSG00000119655 Niemann-Pick disease, type C2 14 0.9300
HGF ENSG00000019991 hepatocyte growth factor 16 0.8596
CSF1 ENSG00000184371 colony stimulating factor 1 8 0.7955

Subset of secreted HSC gene products which best describe the expression changes observed in conditioned HCC samples. symbol: gene symbol,
ensembl gene ID: ensembl gene identifier, set size: number of HCC genes influenced by HSC gene product, probability: probability from MGSA that the
target gene set is active (see Materials and Methods).

doi:10.1371/journal.pcbi.1004293.t001
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The metalloprotease Pregnancy-Associated Plasma Protein A (PAPPA) is also a member of
the IGF-axis. PAPPA is implicated in several biological functions [43], including the regulation
of local IGF1 bioavailability through cleavage of IGFBPs [44]. Its expression in the liver under
both, physiological and pathological conditions, including HCC development and progression,
has not been elucidated yet. The few available studies on other tumor entities located PAPPA
expression to cancer rather than stromal cells [45], and controversial roles of PAPPA regarding
tumor progression have been reported in ovarian cancer [46]. Thus, we decided to focus our
subsequent analysis on the role of PAPPA in HCC.

Impact of parameter choice

In principle, parameters in our analysis could be set to different values and lead to different re-
sults. We evaluated the influence of gene pre-filtering and parameter settings in our analyses
and found that the results were stable within the computationally feasible settings. Gene pre-fil-
tering was necessary because network estimation is computationally very demanding with
many genes. We evaluated our criteria for gene selection in a leave-one-out cross-validation
and found that the selected genes are stable (secreted HSC genes: 95.1% identical with standard
deviation (SD) 0.7%, intracellular HSC genes: 86.6% identical with SD 1.3%, HCC genes: 97.2%
identical with SD 1.4%). S3 Table shows an aggregation of results when varying parameters in
the causal analysis and demonstrates that these results are also stable. Among others, PAPPA is
always within the top 10 stromal regulators.

PAPPA activates NFkB signaling in HCC cell lines

The list of CM sensitive HCC genes includes various members of the NFxB pathway (Fig 2;
NFKBI1 (ENSG00000109320), NFKB2 (ENSG00000077150), NFKBIZ (ENSG0000014480),
NFKBIA (ENSG00000100906), RELB (ENSG00000104856)) and targets of the NFkB pathway
previously collected by Compagno et al [47], such as BIRC3, EGR1 (ENSG00000120738),
ICAM1 (ENSG00000090339), IL8 (ENSG00000169429), MAP3K8 (ENSG00000107968). Sev-
eral of these genes were predicted to be targets of HSC secreted PAPPA by our causal analysis
(ICAM1, MAP3K8, NFKBIA, see S4 Table for the full list). Also the other predicted target
genes are known to be regulated by the transcription factor NF«B or to affect this signal trans-
duction pathway [48,49,50,51,52,53]. To test whether PAPPA might be indeed responsible for
activation and auto-regulation of the NFxB pathway, we assessed NF«B activity in stimulated
HCC cells and observed a striking correlation of PAPPA levels in conditioned medium (CM)
from the 15 different HSCs with NF«B activity induced in HCC cells upon incubation with
these different CMs (Fig 5A). To verify a causal effect of PAPPA on NFxB activity in HCC, we
stimulated Hep3B HCC cells with recombinant human PAPPA protein (rPAPPA). We applied
rPAPPA (25 ng/ml) either alone or in CM of HSCs from two different donors containing en-
dogenous PAPPA levels of 4.8 ng/ml and 6.2 ng/ml, respectively. In control medium, rPAPPA
did not significantly affect IkB-a- and p65-phosphorylation, while together with CM both IkB-
o.- and p65-phosphorylation were higher than in CM-stimulated cells (Fig 5B).

PAPPA is expressed in human HSCs but notin HCC cells

Quantitative real time PCR analysis showed strong PAPPA mRNA expression in HSCs where-
as no expression was detectable in 4 different human HCC cell lines including Hep3B (S2 Fig).
Concordantly, PAPPA protein levels ranged from approximately 5 to 35 ng/ml in supernatants
of HSC cultures, while no PAPPA protein was detectable in the supernatants of the 4 different
HCC cell lines (Figs 6A and S3). In the 15 different HSCs, we observed a significant correlation
between mRNA and protein levels of PAPPA (Fig 6B), indicating that secreted PAPPA levels
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Fig 5. Correlation of HSC secreted PAPPA levels with NFkB activation in conditioned HCC. A.
Correlation of HSC-CM induced NFkB activity in HCC cells (relative to NFkB activity in cells stimulated with
control medium) with PAPPA levels in HSC-CM (n = 15). B. HCC cells were incubated with recombinant
human PAPPA protein (PAPPA) either in CM from HCSs from 2 different human donors (CM1 and CM2) or
control medium (ctr.). Furthermore, cells were stimulated with CM1, CM2 or control medium alone. After 4h
stimulation, cellular extracts were analyzed with Western blot analysis for phosphorylated p65 and IkB-alpha.
Analysis of actin expression demonstrated equal loading.

doi:10.1371/journal.pcbi.1004293.g005

are regulated at the transcriptional level. Next, we assessed PAPPA gene expression in HCC speci-
mens from 52 patients and found a significant correlation with collagen type I (COL1A1;
ENSG0000010882) mRNA expression (Fig 6C). This finding could be confirmed in the HCC co-
hort of The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov) (S4 Fig). HSCs infiltrate
and form the HCC stroma and collagen type I is specifically expressed by HSCs in HCC tissue
[4,54,5]. Together, these findings indicate that HSCs are the major source of PAPPA in HCC.

PAPPA expression correlates with HCC progression in vivo

Histological staging of HCC is a prognostic factor of patient survival in HCC [54,55,56]. We
found that PAPPA expression in human HCC specimens (n = 52) was significantly lower
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Fig 6. PAPPA expression in HSCs and HCC tissues. PAPPA protein levels in conditioned media,
correlation of protein and mRNA levels, and correlation with collagen. A. PAPPA levels in conditioned media
of HSCs from 15 different human donors. B. Correlation of PAPPA protein levels and mRNA levels in HSCs
from 15 different human donors. C. Correlation of PAPPA and collagen | (COL1A1) mRNA expression in 51
human HCC tissues.

doi:10.1371/journal.pcbi.1004293.9g006

(p =0.008, one-way ANOVA) in patients with low histological staging (stage I; n = 12) com-
pared to patients with stage IT (n = 19) and stage III (n = 21) disease (Fig 7). In an independent
data set, the HCC cohort of TCGA, PAPPA expression was also significantly lower in stage I

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004293 May 28, 2015
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Fig 7. PAPPA expression in human HCC tissues of different tumor stages. PAPPA mRNA expression
levels in human HCC tissues (n = 52) of tumor stages | (n=12), Il (n =19) and Ill (n = 21). One-way ANOVA
shows a significant effect (p = 0.008) of tumor stage on PAPPA mRNA expression level.

doi:10.1371/journal.pcbi.1004293.9007

patients (n = 104) compared to stage II (n = 56) and stage III (n = 39) in a one-way ANOVA
(p =0.0126) (S5 Fig). Together, these findings indicate the clinical relevance of HSC secreted
PAPPA for HCC progression.

Discussion

Introductory statistical text books stress the difference between association and causation. For
example, correlation between the expression levels of two genes does not imply that one gene
regulates the other. They can as well be co-regulated by a third gene. The gold standard to infer
causalities is experimental intervention. If a knock-down of the first gene changes the expres-
sion of the second, there is a functional relation between the two. In fact, the rationale of func-
tional genetics is to understand the cell by breaking it. Functional assays that perturb biological
networks experimentally shed light on cellular mechanisms.

Causal inference from observational data is a more advanced statistical discipline [13,14]
that only recently found its way into bioinformatics and systems biology after a statistical
breakthrough paper by Maathuis et al. (2009) [12]. To date it has been used for the analysis of
yeast deletion strains [16], to predict genes regulating flowering time in Arabidopsis thaliana
[57], and for the prediction of miRNA targets [58]. Here, we add another biological application
to this list: The identification of secreted proteins that drive inter-cellular communication in
human cancer.

State of the art statistical methodology does not allow for feedback mechanisms between the
regulator and its target. This is an assumption that nature does not meet in many cases. In a
tumor it is most likely that the communication between stromal and tumor cells is mutual. In
our experimental setting however, feedback is blocked. Stromal and cancer cells grow in sepa-
rate cultures. The stromal cells "talk" to the cancer cells via the CMs but there is no "reply".

Clearly, this does not give us a full picture of cellular communication; feedback mechanisms
are blocked and so are signals mediated by cell-cell contacts. But it is this focus on unidirection-
al paracrine signaling that allows us to use causal modeling. The experimental design is tailored
to the capabilities of the predictive model. In spite of these limitations our application to HCC
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demonstrates that the method can generate novel and potentially clinical relevant insights into
the mechanisms of stroma-tumor communication. We unmasked PAPPA as a novel stroma
secreted factor impacting the tumor phenotype.

Notably, our 10 HSC secreted regulators did not only include PAPPA but two more genes
of the IGF-axis. The IGF-axis is one of the molecular networks involved in the formation, pro-
gression and metastatic spread of many cancer types, including HCC. IGF2 and IGFBP2 are
known to critically affect HCC development and progression. Still, most studies focused on au-
tocrine effects of these two secreted proteins in cancer cells, while our data suggest a paracrine
effect whereby HSC derived IGF2 and IGFBP2 influence IGF-signaling in HCC cells.

The expression and function of PAPPA in normal and diseased liver were not known thus
far. To date, PAPPA has been mainly used as a biomarker in prenatal screening for Down's
syndrome [43]. More recently, PAPPA has been identified as a regulator of the bioavailability
of IGFs through the cleavage of IGF binding proteins [43,59]. It has been suggested to exert a
protumorigenic role in breast cancer, lung cancer, and malignant pleural mesothelioma [59].
In contrast, breast cancer cells have been reported to become more invasive after down-regula-
tion of PAPPA [60]. Controversial roles of PAPPA have also been reported in ovarian cancer,
with most ovarian cancer cell lines and primary tumors showing partial or complete loss of
PAPPA expression [45]. Furthermore, PAPPA expression was shown to be consistently high in
normal ovarian specimens, while it was suppressed by SV40 large T antigen [61].

In HCC, our data suggest PAPPA as a protumorigenic factor. We found significantly higher
PAPPA expression levels in advanced stage tumors. On the mechanistic side, we found that
PAPPA induces NF«kB-activity in HCC cells. We observed a significant correlation between
PAPPA levels in different conditioned media of HSCs and corresponding effects on NF«B acti-
vation in HCC cells in vitro.

Interestingly, studies in ovarian, breast and lung cancer as well as malignant pleural meso-
thelioma revealed the cancer rather than the stromal cells as the cellular source of PAPPA.
Here, in contrast, PAPPA expression was only detected in HSCs, but not in HCC cells. This
makes PAPPA a promising therapeutic target in HCC, as tumor stromal cells are genetically
more stable than cancer cells, which renders them less likely to evade therapy. Moreover, it has
to be considered that the IGF-axis also plays a critical role in HSC activation and fibrosis [62].
Although the function of PAPPA in HSCs is unknown, it may be speculated that PAPPA inhi-
bition may suppress the fibrogenic phenotype of HSCs. Since HCC mostly develops in cirrhotic
liver tissue [1,4], inhibition of PAPPA could not only affect HCC cells but also prevent the for-
mation of a protumorigenic soil for cancer cells.

Due to its central role in cancer progression, a variety of reagents have been developed to
modulate IGF signaling including neutralizing antibodies against IGFs and IGF-receptors as
well as associated receptor kinase inhibitors in aim for cancer treatment [63]. The structural
similarities of the insulin and IGF-IRs complicate the development of specific agents that block
IGF-IR signaling without affecting insulin signaling. This is particularly true with regards to
treatment of liver cancer due to the central role of the liver in glucose metabolism and homeo-
stasis. In contrast to the persistent and versatile physiological functions of other components of
the IGF1 axis, PAPPA could not be detected in normal human liver and primary human hepa-
tocytes (S6 Fig). Therefore, PAPPA appears as a better therapeutic target for HCC with more
tumor specificity and less risks of side effects as compared to other IGF1 axis components. Ac-
tually, genetic deletion of PAPPA extended lifespan of mice [59,64].

In conclusion, we have shown for the first time that causal modeling can be used to identify
stromal signaling molecules that influence the cancer phenotype. Application of our modeling
strategy unmasked PAPPA as a novel paracrine factor that shapes the tumor phenotype via ac-
tivating the NFxB pathway.
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Materials and Methods
Ethics statement

Human liver tissues were obtained and experimental procedures were performed according to
the guidelines of the charitable state controlled foundation HTCR (Human Tissue and Cell Re-
search), with the informed patients’ consents, and approval by the local ethics committee of the
Ludwig-Maximilians University of Munich (reference number 025-12). All experiments in-
volving human tissues and cells have been carried out in accordance with The Code of Ethics
of the World Medical Association (Declaration of Helsinki).

Cells and cell culture models

The human HCC cell lines Hep3B (American Type Culture Collection (ATCC) number HB-
8064), HepG2 (ATCC; HB-8065), PLC (ATCC; CRL-8024) and Huh-7 (Japan Collection of
Research Bioresources (JCR) number B0403) were cultured as described [10,65].

Primary human hepatic stellate cells (HSCs) were isolated from 15 different human donors
as described [10,66,67]. The isolation procedure and cell culture on uncoated tissue culture
dishes led to the activation of HSCs as described [66,67]. For collection of conditioned medium
(CM), HSCs were seeded into T75 flasks (2 x 10° cells). One day after seeding cells were
washed twice with serum-free DMEM, and then incubated for another 24 h with serum-free
DMEM (15 mL/T75). CM was centrifuged at 6,000 x g to remove cell debris, sterile filtered
(0.45 um pore size membrane filter), and stored in aliquots at —80°C until use. Serum-free
DMEM incubated for 24 h in cell culture flasks without cells served as the control.

For stimulation with HSC conditioned media, HCC cells were seeded into T25 flask (10°
cells). One day after seeding, cells were washed with serum-free DMEM, and then incubated
for another 12 h with serum-free DMEM. Subsequently, the medium was changed and cells
were incubated with 3 mL of HSC-CM or control medium (serum-free DMEM) for 4 h.

For individual experiments, CM was preincubated with recombinant PAPPA (R&D Sys-
tems, Wiesbaden, Germany).

HCC tissues were obtained from HCC patients undergoing surgical resection. Tissue sam-
ples were immediately snap-frozen and stored at -80°C until analysis.

RNA extraction and gene expression analysis

Isolation of total cellular RNA from cultured cells and tissues and reverse transcription were
performed as described [10,65]. 300 ng of RNA were hybridized to Affymetrix Human Gene
ST 1.0 arrays following the standard Affymetrix protocol (Affymetrix, High Wycombe, UK).
Hybridization and scanning were performed at an Affymetrix Service Provider and Core Facili-
ty, “KFB—Center of Excellence for Fluorescent Bioanalytics” (Regensburg, Germany; www.
kfb-regensburg.de).

Quantitative real-time-PCR was performed applying LightCycler technology (Roche,
Mannheim, Germany) and the following pairs of primers: human PAPPA (forward: 5-AGC
CAG CAG CAT CCC AGG TGT-3} reverse: 5-CGC CCG GAG CCA AAA AGT GGT)-3'and
human collagen type I (forward: 5- CGG CTC CTG CTC CTC TT -3 reverse: 5'-GGG GCA
GTT CTT GGT CTC -3'). Amplification of cDNA derived from 18s rRNA (forward: 5-TCT
GTG ATG CCC TTA GAT GTC C-3]; reverse: 5-CCA TCC AAT CGG TAG TAG CG-3') was
used for normalization.
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Western blot analysis

Protein extraction and western blotting analysis were performed as described [65] applying an-
tibodies against phospho-NF-xB p65 ((Ser536) rabbit mAb #3033) and phospho-IxBo
((Ser32); rabbit mAb #2859) both from Cell Signaling Technology (Danvers, MA, USA; all di-
luted 1:1,000). Furthermore, an antibody against actin (MAB1501 from Merck Millipore, Bil-
lerica, MA, USA; 1:1,000) was applied.

Quantification of activated nuclear NFkB concentration

Activated NF-kB was quantified in nuclear extracts with the ELISA based kit TransAm from
Active Motif (Rixensart, Belgium) according to the manufacturer's instructions, as described
[66].

Pre-processing of microarray data

Normalization of raw intensity values from CEL files was performed using variance stabiliza-
tion (VSN) [68]. Median polish and a custom chip description file based on ensembl gene iden-
tifiers [69] were used to summarize individual probes to obtain an expression level per gene.
Raw intensities and normalized gene expression data are available publicly at the NCBI Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under accession GSE62455.
Differential gene expression between Hep3B cells treated with different CMs and untreated
Hep3B controls was estimated using limma [70]. All analyses were performed within the statis-
tical programming environment R.

Gene Set Analysis, network analysis

Gene Set Analysis (GSA) was performed using hypergeometric tests implemented in the Bio-
conductor package HTSanalyzeR [71]. Genes meeting the FDR threshold of 0.001 and an abso-
lute log2 fold change larger than one were selected for testing significant enrichment of Gene
Ontology (GO) terms within the Biological Process (BP) branch. The Bioconductor package
BioNet [20] was used to find the highest-scoring sub-network within the differentially express-
ed genes with FDR < 0.001 and an absolute log2 fold change larger than 0.7.

Proteomic analysis of HSC-conditioned media

Aliquots of conditioned media (400 pL each) were used for protein precipitation with 4 vol-
umes of ice-cold acetone. After 2 h incubation at -20°C, samples were centrifuged at 20,000 x g
for 10 min. Pellets were air-dried and stored at -20°C until further use.

Combining the lists of proteins identified with gel-free and gel-based secretome analysis re-
sulted in 305 proteins total.

Gel-free secretome analysis

Protein pellets were dissolved in 0.5 M triethylammonium bicarbonate (TEAB, Sigma Aldrich,
St. Louis, MO, USA) and denatured at 60°C for 1 hour. The exact protein concentration was
determined employing a Bradford assay, using a serial dilution of bovine serum albumin (BSA,
Sigma Aldrich) from 31.25 to 2000 pg/mL in 0.5 M TEAB for calibration. Disulfide bonds were
reduced at 60°C for 1 hour by addition of 4.55 mM tris(2-Carboxyethyl)phosphine hydrochlo-
ride solution (TCEP-HCI, Sigma Aldrich), followed by alkylation with 8.7 mM iodo acetamide
(TIAA, Sigma Aldrich) at 24°C for 30 min. Protein digestion was performed overnight at 37°C
using trypsin (Promega, Madision, WI, USA) at a ratio of 1:50 to the protein concentration.
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Digests were dried in a SpeedVac before adjusting peptide concentration to 1 ug/pL in 0.05%
trifluoracetic acid (TFA, Sigma Aldrich).

The HPLC instrument was an UltiMate 3000 Nano LC system from Dionex (Germering,
Germany) and the mass spectrometer was an LTQ Orbitrap XL from Thermo Scientific (Wal-
tham, MA, USA) equipped with a nano-electrospray ion source. The spray was generated with
10 pm id and 360 pm o.d. fused silica tips from New Objective (Woburn, MA, USA). Tryptic
peptides were separated by nano-ion-pair reversed-phase (IP-RP)—HPLC at pH 2.0 on a
150 x 0.20 mm I.D. RP polymer monolith capillary column from Thermo Scientific using a
2-hour gradient of 0-40% acetonitrile in 0.05% aqueous trifluoroacetic acid at a flow-rate of
1 pL/min. The MSI survey scans of the eluting peptides were executed in the LTQ Orbitrap XL
with a resolution of 60,000, recording a window between 450.0 and 2000.0 m/z. The three most
intense precursor ions were selected for fragmentation with collision-induced dissociation
(CID). The normalized collision energy (NCE) was set at 35.0% for all scans. Data evaluation
was performed with Proteome Discoverer (Thermo Scientific) and the open—source library
OpenMS.

Gel-based secretome analysis

Protein pellets were dissolved in 10 uL of LDS-sample buffer and separated on Invitrogen
NuPAGE BisTris SDS-gels (4-12%, MOPS-buffer system) with subsequent colloidal Coom-
massie staining. Lanes were cut into 30 slices of equal size and washed, carbamidomethylated
and tryptically digested prior to nano-LC-QTOF-MS/MS analysis as published previously [72].
Tandem mass spectra were searched against the Uniprot database (version 57.15) using the
Mascot 2.2 search algorithm (Matrix Science, London, UK) applying the two-peptide-rule.

IDA modeling

To find HSC gene products that influence gene expression in HCC cells, we applied Interven-
tion-calculus when the DAG (directed acyclic graph) is Absent (IDA) [12]. The algorithm con-
sists of two parts: first, an equivalence class of DAGs is estimated from the observational
expression data with the pc-algorithm [13], before causal effects are derived using the graph
and intervention calculus [14].

Prior to modeling, gene selection was performed as follows: Gene products secreted from
HSC cells were defined as all genes with the terms ‘extracellular’, ‘intercellular’ or ‘secret*” in
any Gene Ontology term or definition. This yielded 1919 genes. Next, genes coding for recep-
tors were removed. The remaining genes were filtered based on expression level, excluding
genes that had not been expressed at least in 1/15 CM-stimulated HSC samples at a level larger
than the 40th percentile of expression values across all genes and HSC samples. Next, genes
with low inter-quartile range, a robust estimate of the variance, across HSC samples were ex-
cluded (lowest 20%), yielding 1024 genes annotated to be secreted or present outside of the cell.
Next, the overlap between these genes and the gene products detected by mass spectrometry in
the HSC-CM (305 gene products) was generated, resulting in 153 gene products. Additionally,
growth factors were retained even if they were not detected, as for example IGFs are too small
to be monitored by mass spectrometry. This procedure led to a final number of 186 HSC-se-
creted proteins with a potential influence on HCC cell gene expression going into modeling.
The list of HSC secreted gene products is provided in S2 Table.

From the remaining HSC genes, only the genes with highest expression levels (at least 3
samples above the 40th percentile) and with highest inter-quartile range (top 976, such that the
total number of HSC genes was 2000) were selected. These genes were supposed to build the
network that regulates the secreted genes. On the HCC sample side, genes were selected for
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differential expression based on significance (q < 0.001), and on log2 fold change (absolute
log2 fold change > 1) to focus only on the strongest responses of the HCC cells. This resulted
in 227 HCC genes. The filtering procedure is depicted in the left part of Fig 4. Gene expression
values were centered and scaled to standard deviation equal to one to make causal effects com-
parable across genes. From the 2000 HSC genes (secreted and remaining genes), the equiva-
lence class of DAGs was estimated and causal effects were derived from the secreted HSC genes
on the selected HCC genes. IDA needs a single tuning parameter, o, which controls the neigh-
borhood size of the graph. It was set to 0.2 as this resulted in the best balance between a not too
sparse network and computational burden (higher o values lead to longer running times). To
find effects insensitive to small disturbances of the data, IDA was run in a sub-sampling ap-
proach adopted from Meinshausen & Bithlmann [73]. For a total of 100 times, 12 out of the 15
samples were drawn, the CPDAG was estimated and causal effects were derived for each DAG
in the equivalence class. As a lower bound, the minimum effect of the individual DAGs was re-
tained. The effects were then ranked across all outcome genes (differentially expressed cancer
genes) by effect size for each sub-sampling run and the relative frequency of an effect being
among the top 30% of effects across all runs was recorded. All effects with a relative frequency
equal or above 0.7 were retained for further analysis and the median effect across all sub-sam-
ples was recorded. The steps of the causal analysis are schematically shown in the right part of
Fig 4.

Finding the most important regulators

To gain insights into the most important HSC derived regulators of gene expression in HCC,
Model-based Gene Set Analysis (MGSA) [24] was employed with the modification that gene
sets were redefined as all genes targeted by a specific regulator. For example, the gene set
‘CXCL1’ was comprised of all HCC genes on which CXCL1 exerted a predicted causal effect.
MGSA was then used to find a sparse set of regulators explaining the observed differentially ex-
pressed genes (q < 0.001, absolute log2 fold change > 1). All predictor-target sets with a poste-
rior probability > b were declared to be the most important regulators. The parameters within
MGSA were left at default values, but the size of the gene sets (controlled by the relative fre-
quency cutoff in stability selection) used as input of MGSA was calibrated such that HGF, a
known true positive, was in the final list of secreted regulators. While this criterion did not give
us unique parameter settings, the remaining genes in the lists resulting from different parame-
ter settings that included HGF were almost identical (S3 Table).

PAPPA expression in The Cancer Genome Atlas

Un-normalized RNA sequencing and clinical data of liver hepatocellular carcinoma (LIHC)
patients was downloaded from The Cancer Genome Atlas (TCGA, http://cancergenome.nih.
gov) and normalized using size factors calculated by the R package DESeq2 [74] (function ‘esti-
mateSizeFactorsForMatrix’) and log2-transformed with a pseudo-count of 1 to avoid missing
values for samples with zero counts. For the analysis of association of PAPPA expression levels
with staging, patients staged with the 7™ edition of the AJCC (American Joint Committee on
Cancer) that were classified into stages I, II or IIIA were used (n = 199). Stages IIIB, IIIC, IV,
and IVA were omitted because of low sample sizes (n<10). For the correlation of PAPPA levels
with COL1A levels, all LIHC patients were used (n = 424).

Supporting Information

S1 Table. HSC genes identified based on univariate correlation. Univariate Pearson correla-
tion was calculated between all secreted HSC and CM-responsive HCC genes. HSC genes were
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ranked based on the number of HCC genes that they correlated with (absolute
correlation > 0.7).
(CSV)

S2 Table. Secreted proteins used for causal modeling. Proteins detected in at least one of the
5 conditioned media analyzed and annotated growth factors used for causal modeling. Col-
umns hold the following information: ensembl_gene_id: ensembl gene identifier; hgnc_sym-
bol: official gene symbol; uniprot_swissprot: uniprot protein identifier; description: gene
description provided by ensembl. Proteins not detected but annotated as growth factors have
NA in the protein identifier field.

(CSV)

$3 Table. Variation of parameters in causal analysis and identification of secreted HSC reg-
ulators. The frequency of an individual effect to be among the top q strongest effects (denoted
pi) was varied from 80 to 90 in intervals of 5. Parameter q was varied over the full range of ef-
fects in steps of 2% and the median frequency used for selecting stable effects such that for each
value of pi, all possible values of q were integrated. Next, MGSA was run on the three lists with
different pi values and the median rank over the three MGSA rankings was used for ordering
HSC genes. PGF, IGFBP2, PAPPA and HGF are at the top ranks. Values of q and pi outside
the range shown did not yield informative lists of targeted HCC genes (either poor coverage or
too redundant).

(CSV)

S4 Table. PAPPA targets. HCC genes predicted to be regulated by HSC secreted PAPPA. gen-
e_id: ensembl gene identifier; hgnc_symbol: official gene symbol; frequency: frequency of this
effect to be among the top 30% strongest effects across sub-sampling runs; median_Effect: me-
dian effect size across sub-sampling runs, description: gene description provided by ensembl.
(CSV)

S1 Fig. Overrepresented Gene Ontology Biological Process (BP) terms in conditioned
media-induced HCC genes. The top 20 terms with smallest Benjamini-Hochberg adjusted p-
values are shown.

(PDF)

S2 Fig. PAPPA mRNA expression levels in human HSCs and 4 different human HCC cell
lines (Hep3B, HepG2, PLC and Huh?).
(PDF)

S3 Fig. PAPPA protein secretion levels in human HSCs and 4 different human HCC cell
lines (Hep3B, HepG2, PLC and Huh?).
(PDF)

S4 Fig. PAPPA expression correlates with collagen type I expression in HCC tissues from
TCGA.
(PDF)

S5 Fig. PAPPA expression is associated with tumor stage in the TCGA HCC cohort.
(PDF)

S6 Fig. PAPPA mRNA expression in human HSCs, primary human hepatocytes (PHH)
and normal human liver tissues (HLT).
(PDF)
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