28 research outputs found

    The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems

    Get PDF
    Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work

    Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile

    Get PDF
    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was −53 g C m−2 in 2011 and −111 g C m−2 in 2012, showing that the ecosystem acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.This work was funded by FONDECYT projects 1120713 and 1170429, a grant from the Inter-American Institute for Global Change Research (IAI) [grant number CRN3056], which is supported by the US National Science Foundation [grant number GEO-1128040], and the Spanish Ministry of Economy and Competitiveness project GEI Spain (CGL2014-52838-C2-1-R), including ERDF founds. F. Bravo-MartĂ­nez is grateful to CONICYT for the grants “FormaciĂłn de Capital Humano Avanzado-2009â€Čâ€Č, “Beca de Apoyo al tĂ©rmino de la tesis doctoral-2012â€Čâ€Č, and CORFO INNOVA Grant N° 09CN14-5704. We thank to Enrique PĂ©rez Sanchez-Cañete and Borja RuĂ­z- Reverter for technical support. We also thank “CODELCO–DivisiĂłn Andina” for use of the site. C. Montes acknowledges the NASA Postdoctoral Program and to Universities Space Research Association

    Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    Get PDF
    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia

    Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat

    Get PDF
    Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Full text link

    Mapping vulnerability and conservation adaptation strategies under climate change

    No full text
    Identification of spatial gradients in ecosystem vulnerability to global climate change and local stressors is an important step in the formulation and implementation of appropriate countermeasures. Here we build on recent work to map ecoregional exposure to future climate, using an envelope-based gauge of future climate stability - defined as a measure of how similar the future climate of a region will be to the present climate. We incorporate an assessment of each ecoregion's adaptive capacity, based on spatial analysis of its natural integrity - the proportion of intact natural vegetation - to present a measure of global ecosystem vulnerability. The relationship between intactness (adaptive capacity) and stability (exposure) varies widely across ecoregions, with some of the most vulnerable, according to this measure, located in southern and southeastern Asia, western and central Europe, eastern South America and southern Australia. To ensure the applicability of these findings to conservation, we provide a matrix that highlights the potential implications of this vulnerability assessment for adaptation planning and offers a spatially explicit management guide

    16 Tropical Ecology, Assessment and Monitoring Program, Conservation International

    No full text
    Conservation priority-setting schemes have not yet combined geographic priorities with a framework that can guide the allocation of funds among alternate conservation actions that address specific threats. We develop such a framework, and apply it to 17 of the world's 39 Mediterranean ecoregions. This framework offers an improvement over approaches that only focus on land purchase or species richness and do not account for threats. We discover that one could protect many more plant and vertebrate species by investing in a sequence of conservation actions targeted towards specific threats, such as invasive species control, land acquisition, and off-reserve management, than by relying solely on acquiring land for protected areas. Applying this new framework will ensure investment in actions that provide the most cost-effective outcomes for biodiversity conservation. This will help to minimise the misallocation of scarce conservation resources
    corecore