169 research outputs found

    Embodied Emotion Modulates Neural Signature of Performance Monitoring

    Get PDF
    BACKGROUND:Recent research on the "embodiment of emotion" implies that experiencing an emotion may involve perceptual, somatovisceral, and motor feedback aspects. For example, manipulations of facial expression and posture appear to induce emotional states and influence how affective information is processed. The present study investigates whether performance monitoring, a cognitive process known to be under heavy control of the dopaminergic system, is modulated by induced facial expressions. In particular, we focused on the error-related negativity, an electrophysiological correlate of performance monitoring. METHODS/PRINCIPAL FINDINGS:During a choice reaction task, participants held a Chinese chop stick either horizontally between the teeth ("smile" condition) or, in different runs, vertically ("no smile") with the upper lip. In a third control condition, no chop stick was used ("no stick"). It could be shown on a separate sample that the facial feedback procedure is feasible to induce mild changes in positive affect. In the ERP sample, the smile condition, hypothesized to lead to an increase in dopaminergic activity, was associated with a decrease of ERN amplitude relative to "no smile" and "no stick" conditions. CONCLUSION:Embodying emotions by induced facial expressions leads to a changes in the neural correlates of error detection. We suggest that this is due to the joint influence of the dopaminergic system on positive affect and performance monitoring

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Comparison of quality-of-care measures in U.S. patients with end-stage renal disease secondary to lupus nephritis vs. other causes

    Get PDF
    BACKGROUND: Patients with end-stage renal disease (ESRD) due to lupus nephritis (LN-ESRD) may be followed by multiple providers (nephrologists and rheumatologists) and have greater opportunities to receive recommended ESRD-related care. We aimed to examine whether LN-ESRD patients have better quality of ESRD care compared to other ESRD patients. METHODS: Among incident patients (7/05–9/11) with ESRD due to LN (n = 6,594) vs. other causes (n = 617,758), identified using a national surveillance cohort (United States Renal Data System), we determined the association between attributed cause of ESRD and quality-of-care measures (pre-ESRD nephrology care, placement on the deceased donor kidney transplant waitlist, and placement of permanent vascular access). Multivariable logistic and Cox proportional hazards models were used to estimate adjusted odds ratios (ORs) and hazard ratios (HRs). RESULTS: LN-ESRD patients were more likely than other ESRD patients to receive pre-ESRD care (71% vs. 66%; OR = 1.68, 95% CI 1.57-1.78) and be placed on the transplant waitlist in the first year (206 vs. 86 per 1000 patient-years; HR = 1.42, 95% CI 1.34–1.52). However, only 24% had a permanent vascular access (fistula or graft) in place at dialysis start (vs. 36%; OR = 0.63, 95% CI 0.59–0.67). CONCLUSIONS: LN-ESRD patients are more likely to receive pre-ESRD care and have better access to transplant, but are less likely to have a permanent vascular access for dialysis, than other ESRD patients. Further studies are warranted to examine barriers to permanent vascular access placement, as well as morbidity and mortality associated with temporary access, in patients with LN-ESRD

    Activation of the Left Inferior Frontal Gyrus in the First 200 ms of Reading: Evidence from Magnetoencephalography (MEG)

    Get PDF
    BACKGROUND: It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. METHODOLOGY/PRINCIPAL FINDINGS: MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. CONCLUSIONS/SIGNIFICANCE: These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code

    Tetradecylthioacetic Acid Increases Hepatic Mitochondrial β-Oxidation and Alters Fatty Acid Composition in a Mouse Model of Chronic Inflammation

    Get PDF
    The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced β-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial β-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF

    The genome of the sea urchin Strongylocentrotus purpuratus

    Get PDF
    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention
    • …
    corecore