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Abstract  

Skill acquisition represents a progression from high to low reliance on the conscious control of 

action.  The ability to produce action without drawing upon limited attentional resources has 

traditionally been the defining characteristic of skill automaticity.  As such, learning represents a 

progression from low to high efficiency in the cognitive processes needed to plan, execute and 

update skilled movement.  In this chapter, we summarize neuroimaging findings that illustrate 

the evolution of such efficiency in terms of the neural adaptations that underlie skill learning 

automatization.  As a backdrop to these findings, we first review the cognitive characteristics of 

skill automaticity as well as a contemporary theoretical framework for how we perform action 

based on sequencing movement elements.  This provides a vantage point from which neural 

basis of skill automaticity can be considered in terms of associative and sensorimotor learning 

processes that provide for more efficient action in terms of cognitive requirements.   We then 

contrast this with a summary of the contextual interference effect, which represents a cautionary 

account for the negative learning consequences associated with training protocols that appear to 

expedite skill automaticity.   
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11.1 Introduction 

As we acquire a motor skill, two general characteristics typically emerge (Fitts, 1964; 

Fitts & Posner, 1967; Gentile, 1972, 1998).  First, performance improves.  Second, skill 

performance becomes automated (Fitts, 1964).  Of these two characteristics, it is the latter that 

has particularly fascinated society.  This is not surprising given that the time constraints under 

which we must perform many of our everyday behaviors demand we automate action (e.g., 

driving a car on a busy street).  Moreover, it is the transition from the effortful to the effortless 

that is the quintessential subjective experience of transitioning from learning to automaticity.  

The experience of reduced effort coincides with increased mechanical (Bernstein, 1967) and 

metabolic (Almåsbakk et al., 2001) efficiencies.  However, the concept of automaticity has been 

more aligned with gaining efficiency with respect to diminishing the cognitive demands required 

to perform skilled action.  Automaticity implies the absence of conscious awareness and 

therefore the absence of attention, the fundamental process for cognition in the sense that 

cognition and associated terms such as cogitation, recognition relate to knowing, cognoscere in 

Latin (Chaney, 2013).   

The neural underpinnings for the transition from costly, cognizant skill learning to 

efficient relatively attention-free behavior is the central theme of this chapter.  To describe neural 

adaptation associated with establishing skill automaticity, we review findings from studies that 

have utilized fMRI or PET neuroimaging approaches to assess brain activity associated with 

early learning and automatic stages of skill learning.  While automaticity might reflect learning 

associated changes in neurocognitive processes that contribute to skilled action, we then present 

the contextual interference effect (Shea & Morgan, 1979) as a case where neural patterns of 

automaticity can be established quite early in learning to provide temporary performance gains 

as opposed to long-term skill learning.  First, though, we provide a brief historical context of 

automaticity followed by an overview of the cognitive characteristics of skill automaticity and a 

theoretical framework for the progression of skill performance strategies employed across the 

stages of skill learning.  

 

11.1.1 Developing views on skill automaticity 

One of the earliest considerations of autonomous processes in human function is 

attributed to Aristotle (Korsgaard, 2008; Bernacer & Murillo, 2014).  According to Aristotle, 

repetition of a task gave rise to enhanced task performance owing to a developed disposition that 

rendered action less subservient to conscious control and thus, more spontaneous (Bernacer & 

Murillo, 2014).  Thus, rather than Descarte’s view of a fixed dichotomy between controlled and 

automatic behavior (Jonides et al., 1985), that automaticity relied on repetition was suggestive of 

progression across a continuum of controlled and automatic performance (Whitaker, 1983), 

which is in line with contemporary theories of motor skill learning (e.g., Fitts & Posner, 1967). 

In the late 19th Century, two students working in the Harvard Psychological Laboratory 

under William James, Gertrude Stein and Leon Solomons, evaluated the automaticity of writing 

(Solomons & Stein, 1896; Stein, 1898).  That well-practiced writing was performed "outside of 

awareness" (Solomons & Stein, 1896) was interpreted as being necessary to overcome resource 

capacity limits, particularly with respect to attention (James, 1890).  As with many cognitive 

theories (e.g., Miller, 1956; Kahneman, 1973; Posner, 1979), the theme of limited capacity 

became the central raison d'être for automaticity.  For example, LaBerge and Samuels (1974) 

stipulated that skilled performance exceeds limited attention resources and so at least a subset of 

cognitive and motor processes must be automated to allow for successful performance.  Limited 
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capacity refers to information processing restrictions due to finite availability of cognitive 

resources being insufficient to meet the current demand from ongoing processes.  Skilled 

behavior can potentially overwhelm these limits given the high information load associated with 

processes responsible for sensation, perception as well as skilled action preparation, execution, 

monitoring and updating. Reduced reliance on limited resources meant that automated skills 

could be performed in parallel with other tasks with little or no interference (Jastrow, 1891; 

Bahrick et al., 1954; Brown & Carr, 1989; Cohen et al., 1992).  Diminished resource demands 

have been attributed to less reliance on sensory feedback processing (Keele, 1968) as 

automaticity allows movement to be performed under feedforward control as opposed to 

feedback control (Wolpert et al., 1998; Miall et al., 2001; Puttemans et al., 2005).  Feedforward 

control, where production of skilled action does not rely on concurrent sensory input to guide the 

action, is possible when movement production is based on an internal model (Wolpert et al., 

1998; Kawato, 1999), which has been described as involving a motor program (Schmidt, 1975, 

2003) or motor chunk (Verwey, 1999).   

 

11.1.2 Extended practice requirements for skill automaticity 

There is no singular agreed upon definition of motor skill automaticity, which introduces 

difficulty in determining the point at which a skill is automated.  Several approaches in this 

respect have been presented in the literature.  One approach focuses on the level of practice 

associated with the skill.   Specifically, automaticity is thought to arise from extended practice. 

However, extended practice itself is not defined in terms of actual practice volume.  Moreover, 

extended practice requirements would be expected to depend on the skill as well as the 

individual learner.  The popular 10,000 hours of deliberate practice quanta for skill expertise has 

been commingled with skill automaticity even though automaticity is but only one dimension of 

expertise (Singer, 2002).  It is likely that the level of extended practice necessary for 

automaticity is well below 10,000 hours as skill automaticity has been demonstrated with far less 

practice (e.g., Karni et al., 1995).   Quantification issues aside, the provision of  extended 

practice does not necessarily guarantee that skill automaticity will be achieved (Lang & Bastian, 

2002).  For this reason, some propose that overtraining must be implemented to ensure that 

extended practice leads to automaticity (Puttemans et al., 2005; Moors & De Houwer, 2006).  

Overtraining involves the provision of additional practice beyond the point at which skill 

performance reaches asymptote. 

 

11.1.3 Cognitive characteristics of skill automaticity  

More formal, cognition-oriented criteria of skill automaticity have been drawn from 

Schneider and Shiffrin’s (1977) description of an automatic mode of information processing (for 

example, see Ashby & Crossley, 2012).  One criterion is that an automated skill can be 

performed simultaneously with another task without any loss of performance in either the skill or 

the paired task (Passingham, 1996; Wu et al., 2004; Lehericy et al., 2005; Poldrack et al., 2005; 

Wu & Hallett, 2005; Wu et al., 2008; for an example in sport, see Leavitt, 1979).  An extension 

of this criterion involves assessing motor skill attention demands using dual-task methodology 

(Posner & Keele, 1969; McLeod, 1980; Abernethy, 1988; Wright & Kemp, 1992; Verwey et al., 

2010).  Here, the primary task, the presumed automated skill, is performed with a secondary 

probe reaction time (RT) task.  Reduced attention demand from the primary task is inferred when 

there is little increase in probe RT under dual-task conditions in comparison to performing probe 

RT alone.   
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Skill automaticity might also be characterized by the degree of performance inflexibility 

that is observed following a period of training.   Performance inflexibility refers to the extent in 

which performance of the skill deteriorates when the sensory or task environment is changed 

from the conditions that were present during learning.   For example, Proteau et al. (1992) 

demonstrated that manual aiming performance was impaired by introducing visual feedback after 

a period of practice without visual feedback availability.   Automated skills are thought to be 

inflexible to the extent that they will not be modifiable when new conditions are introduced 

during additional practice (Schneider & Chein, 2003).   In Experiment 2 of Helie et al. (2010), 

extended practice involving about 11,000 trials was provided for a visual stimulus categorization 

task that involved key-press responses.  When new stimulus-key response mappings were 

introduced following extended practice, performers demonstrated significant performance losses 

in terms of increased error and RT.   These losses persisted even after the provision of 600 

additional practice trials with the new stimulus-response mappings. 

 

11.1.4 Cognitive framework for skill automatization 

  While performance criteria might be useful to test for skill automaticity, they provide 

little to the understanding of the underlying neurocognitive changes that contribute to observed 

characteristics of automaticity.  Thus, there has been some effort devoted to developing cognitive 

frameworks of skill automatization based on research addressing how we sequence basic 

movement elements into skillful action.   Specifically, findings from studies involving discrete 

key-press sequences have led to the notion that motor skill automaticity is associated with the 

development of sequence knowledge at different processing levels (Hikosaka et al., 1999; 

Abrahamse et al., 2013; Verwey et al., 2015).  According to the cognitive framework for 

sequential motor behavior (C-SMB; Verwey et al., 2015, see Figure 11.1), a motor skill can be 

represented perceptually, symbolically and motorically and these representations are processed 

respectively by perceptual, central and motor processors. Moreover, the manner in which the 

skill is represented and consequently processed changes as the skill is acquired. The idea is that 

sequential motor skills are initially based on spatial and perhaps even verbal sequence forms of 

central-symbolic representations, which are relatively slow and cognitively demanding to apply.  

Extensive practice allows elements to be chunked into motor sequence representations. These 

allow for a skill to be performed with much less cognitive demand because these motor chunks 

are executed by a motor processor that loads cognitive processing resources only for selecting 

and initiating these motor routines. So, as sequential motor skills evolve with practice, the role of 

central-cognitive processing resources changes from selecting and initiating individual 

movements to selecting and initiating integrated movement patterns. This processing change 

would be responsible for the rapid movement execution along with reduced flexibility and 

limited interference with other tasks. 

 

------------------------------------- 

Insert Figure 11.1 About Here 

------------------------------------- 

 

11.1.5 Historical and contemporary views on neural changes associated with skill 

automaticity  

The presence of permanent adaptations in cognitive processes that underlie enhanced 

performance are expected to be accompanied by structural and functional changes in the 
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neurobiological substrates of motor skill automaticity (Matsuzaka et al., 2007; Ashby et al., 

2010).   Work by the neurophysiologist and Nobel laureate, Sir Charles Scott Sherrington (1974), 

offered some of the earliest examination of the neural correlates of movement automaticity 

(Ashby et al., 2007).  Sherrington’s perspective was that skill automaticity represented 

“spontaneous” behavior underpinned by reflexive action, which arose from extensive practice 

(Burke, 2007).  While skill automaticity is no longer viewed as being reflexive, Sherrington’s 

idea that neural ensembles could be formed from experience (i.e., neuroplasticity) to enable 

movement production at any level of the central nervous system (e.g., Sherrington, 1910) gave 

rise to the concept of hierarchical movement control (Pew, 1966; Bernstein, 1967; Koechlin et 

al., 2003; Fuster, 2004).  This in turn gave rise to the claim that novel motor skills require control 

at the resource demanding and least efficient executive cortical levels (e.g., prefrontal cortex), 

but as they are practiced, their control is transferred to more efficient cortical regions such as the 

premotor and primary motor cortices (e.g., Ashby et al., 2010), or subcortical regions such as the 

basal ganglia (e.g., Wu et al., 2004).  Thus, the hallmark feature of skill automaticity, efficiency, 

is derived from practice dependent neuroplastic changes.  These changes do not necessarily 

reflect diminished neural involvement in skilled action but rather the development of neural 

connections that facilitate performance speed and accuracy and in parallel, reduce the cognitive 

demands of performance.  

 

11.2 Neural changes from early skill learning to automatization 

The autonomous stage of motor skill performance (Fitts, 1964) is preceded by learning 

stages that involve cognitive demanding and effortful associative and motor adaptation processes 

(Fitts, 1964; Fitts & Posner, 1967; Gentile, 1972, 1998; Hikosaka et al., 2002).  Early skill 

learning relies on activity in the primary motor cortex (M1), the basal ganglia and the cerebellum 

(Hikosaka et al., 2002; Penhune & Doyon, 2002; Shadmehr & Krakauer, 2008; Krakauer & 

Mazzoni, 2011; Shmuelof & Krakauer, 2011; Penhune & Steele, 2012; Hardwick et al., 2013 - 

see Figure 11.2).  In addition, several frontal regions including the dorsolateral prefrontal 

(DLPFC), premotor (PMC) and supplementary motor area (including the supplementary motor 

area proper, SMA, and the pre supplementary motor area, preSMA) have been shown to 

contribute to early skill learning (Grafton et al., 1992; Jenkins et al., 1994; Jueptner et al., 1997b; 

Toni et al., 1998; Ghilardi et al., 2000; Grafton et al., 2002; Verwey et al., 2018).  Frontal lobe 

cortical activity underlying skill learning follows an anterior to posterior direction according to 

an associative-motor hierarchy for movement preparation and control (Koechlin et al., 2003; 

Fuster, 2004).  As an example, within the associative-motor hierarchy, associative processes 

might relate to the selection of desired responses according to task goals, stimulus conditions or 

preceding responses (Toner & Moran, 2015) whereas motor processes are involved in producing 

the action itself, which might include adapting muscle force specification to meet the skill goal 

(Taylor & Ivry, 2012).  Early in learning, resource demanding executive prefrontal cortices are 

relied on to inform lower motor levels (i.e., premotor and primary motor cortices; Fuster, 2004).  

However, as learning progresses, cortical activity in the frontal lobe diminishes in an anterior to 

posterior direction (Wu et al., 2004; Lehericy et al., 2005; Poldrack et al., 2005; Puttemans et al., 

2005; Wu et al., 2008), which corresponds to a transition from executive to motor levels of 

control and consequently, a reduction in the central resource demands.  This process does not 

appear to be irreversible though as automated skills can be consciously attended to by once again 

invoking activity in the prefrontal cortex (Jueptner et al., 1997b; Kubler et al., 2006). Heightened 

cortical activity associated with early skill learning has also been reported in parietal 
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(specifically the somatosensory region, S1), temporal and occipital regions along with the 

anterior and posterior cortices and the precuneus (Jenkins et al., 1994; Toni et al., 1998; 

Schendan et al., 2003; Robertson, 2007; Shadmehr & Krakauer, 2008; Laird et al., 2011; Lohse 

et al., 2014).   

 

------------------------------------- 

Insert Figure 11.2 About Here 

------------------------------------- 

 

11.2.1 Fast and slow skill learning stages  

 Progression of skill learning from early to later levels of experience is thought to follow 

fast and slow stages (Karni et al., 1998; Dayan & Cohen, 2011). Both fast and slow learning 

stages are experience dependent since the performance improvements only occur with actual task 

practice.  An intermediate stage highlights offline forms of motor learning and includes motor 

memory consolidation processes (Robertson et al., 2004; Walker & Stickgold, 2004; Immink, 

2016).  The fast learning stage is characterized by large performance improvements during initial 

skill practice.   Fast learning is thought to involve attention demanding, associative processes 

(Hikosaka et al., 1999; Hikosaka et al., 2002; Lohse et al., 2014; Verwey et al., 2015; Verwey et 

al., 2018).  As skilled motor tasks are comprised of a series of independent movement elements, 

associative processes contribute to sequence learning where individual movement “building 

blocks” (Verwey & Dronkers, 2018) are associated to form movement representations based on 

“chunked” sequence elements (Grafton et al., 1995; Clegg et al., 1998; Verwey, 1999; 

Abrahamse et al., 2010; Verwey & Wright, 2014; Wright et al., 2016; Immink et al., 2017).  

Early in learning, particularly with discrete key-pressing sequences (Verwey, 1999; Abrahamse 

et al., 2013), performance of movement sequences is slow and demanding because initiation of 

each response element relies on stimulus information processing (Abrahamse et al., 2013; 

Verwey et al., 2015; Verwey et al., 2018; see Figure 11.3, panel B, reaction mode). To render 

sequential performance less stimulus dependent, sequence learning can then progress to 

increased involvement of premotor processes (Lohse et al., 2014) which utilize verbal or 

symbolic representations (Gentile, 1972, 1998; Verwey et al., 2015; Verwey et al., 2018) such as 

when a phone number is verbally recited to enter the requisite sequence on the phone key pad 

(Fendrich & Arengo, 2004; see Figure 11.3, panel B, central-symbolic mode).  Forming 

associations between successive movement elements renders faster and less resource demanding 

sequential behavior as a sequence representation or “motor chunk” provides for more efficient 

motor preparatory processes (Abrahamse et al., 2010; Verwey et al., 2015; Verwey et al., 2018; 

see Figure 11.3, panel C, chunk mode).  “Chunked” sequence representations are then further 

refined in the slow stage of learning, which emphasizes effector specific (Hikosaka et al., 2002) 

mechanisms that contribute to motor representation formation (Lohse et al., 2014; Verwey et al., 

2015; Verwey et al., 2018), and overlapping activity of effectors executing successive 

movements (like the coarticulation found with skilled typists; Shaffer, 1975; Jordan, 1995; Engel 

et al., 1997).  Motor representation driven performance is fast because it does not rely on 

attention demanding sensory feedback or premotor/associative processing.  The tradeoff to 

speeded performance is the lack of flexibility inherent in feedforward modes of performance. 

Neurophysiological evidence for the concept of fast and slow learning stages is based on 

activity within cortico-striatal-cerebellar systems (Doyon & Ungerleider, 2002; Hikosaka et al., 

2002; Doyon et al., 2003; Dayan & Cohen, 2011).  Specifically, associative learning processes, 
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relied upon within the fast stage (Hikosaka et al., 2002; Lohse et al., 2014; Verwey et al., 2018), 

have been correlated with increased activity in the DLPFC (Hikosaka et al., 2002), dorsal and 

ventral PMC (dPMC, vPMC, respectively; Hardwick et al., 2013), the SMA, S1, precuneus, 

striatum (caudate nucleus, anterior and posterior putamen) and cerebellum (Lehericy et al., 2005; 

Wu et al., 2008; Lohse et al., 2014). In contrast, the slow learning stage, which emphasizes 

sensorimotor adaptation (Hikosaka et al., 2002; Lohse et al., 2014; Verwey et al., 2018) appears 

to involve increased activity within M1, dPMC, superior temporal lobe and the posterior 

putamen (Hikosaka et al., 2002; Lehericy et al., 2005; Coynel et al., 2010; Hardwick et al., 2013; 

Lohse et al., 2014).  Changes associated with practice reveal decreases in SMA, vPMC, 

precuneus and cerebellum activity coinciding with increases in activity in M1, posterior putamen 

and globus pallidus (Grafton et al., 1995; Hazeltine et al., 1997; Lehericy et al., 2005; Wu et al., 

2008; Ashby et al., 2010; Lohse et al., 2014).  Overall, findings from neuroimaging studies are 

consistent with a transition from associative, fast learning, to motor, slow learning, processes as 

practice progresses. Moreover, neuroimaging studies provide evidence for decreased reliance on 

higher level control of movement that is concomitant with an anterior to posterior shift in frontal 

lobe activity (Wu et al., 2008) along with increased cortico-striatal connectivity (Toni et al., 

1998). 

 

------------------------------------- 

Insert Figure 11.3 About Here 

     ------------------------------------- 

 

11.2.2 Differentiating learning related neural changes based on skill function and  

performance strategies 

  It should be noted that there is some disagreement exists in the literature with regard to 

changes in brain region activity associated with motor learning.  For example, some have shown 

that with practice, M1 activity increases (Grafton et al., 1995; Hazeltine et al., 1997), while 

others have reported no change (Karni et al., 1995) or M1 activity decrease (Shadmehr & 

Holcomb, 1997).  Lohse et al. (2014) found that left M1 activity increases initially but then 

decreases with extended practice.  Similarly, some have reported learning associated increases in 

cerebellar activity (Jenkins et al., 1994; Doyon et al., 1996), which contrasts with others’ report 

of decreased cerebellum activation (Friston et al., 1992; Grafton et al., 1994; Seitz et al., 1994; 

Jueptner et al., 1997a; Doyon et al., 2002; Lohse et al., 2014). These mixed findings have been 

explained in terms of the variety of motor tasks that have been investigated (Hardwick et al., 

2013).  For example, some studies have involved unimanual sequence learning tasks (e.g., 

Jenkins et al., 1994; Karni et al., 1995) while others have involved bimanual movements 

requiring inter-limb coordination (e.g., Puttemans et al., 2005).  Some tasks involve high motor 

control demands due to having to learn new spatial and temporal movement dynamics requiring 

adaptations to muscle recruitment and joint coordination (e.g., Pearce et al., 2000; Bezzola et al., 

2011; Di Paola et al., 2013).  Other tasks have involved playing musical instruments with 

differing temporal rhythms (e.g., Buccino et al., 2004; Herdener et al., 2010) while some tasks 

have low motor control demands associated with pressing sequences of keys in response to 

visual stimuli (e.g., Doyon et al., 1996; Verwey, 1999; Seidler et al., 2002; Abrahamse et al., 

2013). 

 Variations in reported neural activity might also be explained by the execution strategy 

that is employed to perform the motor skill.  Specifically, using their multiple representation 
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point of view (i.e., perceptual, central and motor representations), Verwey et al. (2015) argued 

that sequence performance can involve different execution modes. These researchers explicitly 

distinguish between a reaction mode, a central-symbolic mode, and a chunking mode (Figure 

11.3, panels B and C). In line with many real-world tasks, individuals performing sequential 

keying tasks in the laboratory usually begin by reacting to fixed series of key-specific stimuli in 

the so-called reaction mode. Quite rapidly, associations develop at various processing levels that 

prime the ensuing response with reduced reliance on key-specific stimuli. With practice, spatial 

or verbal representations develop at the central-symbolic processing level that require cognitive 

processes to extract motor information. Finally, the development of tight associations between 

motor representations leads to the development of motor chunks that in the chunking mode can 

be used to rapidly execute movement sequences with little need for central-cognitive processing. 

Importantly, after substantial practice, these execution modes can be strategically applied and 

may even be concurrently active. Consequently, skilled performers can switch between different 

processing strategies with little or no measurable performance changes. 

To resolve disagreement in neural changes associated with skill acquisition, some have 

proposed differentiating motor skills based on their function.   Some skills place an emphasis on 

learning sequences based on highly practiced movement elements (Robertson, 2007).  An 

example of these types of skills involve sequences of key presses, which is common in lab-based 

paradigms for sequence learning such as the serial reaction time (SRT; Nissen & Bullemer, 

1987; Abrahamse & Noordzij, 2011) and the discrete sequence production (DSP; Verwey, 1999; 

Abrahamse et al., 2013) tasks as well as skills involving typing.  Sequencing key presses 

contrasts skills that emphasize development of complex movement patterns requiring 

sensorimotor adaptation or coordination of multiple limbs.  This contrast is important as motor 

skills might rely on different brain networks.  Specifically, during later stages of learning, 

discrete sequence tasks have been argued to utilize a cortico-striatal network while sensorimotor 

tasks rely on a cortico-cerebellar network (Doyon & Ungerleider, 2002; Doyon et al., 2003).  A 

meta-analysis conducted by Hardwick et al. (2013) which contrasted learning sequential (SRT 

variants) and sensorimotor skills found that both skill types share reliance on the dPMC, 

contralateral M1 and the primary sensorimotor zone (O'Reilly et al., 2010) of the right 

cerebellum (lobule VI).  Acquisition of keying sequence variants was associated with activation 

of the preSMA and SMA along with superior parietal lobule, right lateral cerebellum and left 

thalamus.  This pattern of activity reflects the involvement of reaction mode processes in early 

learning of keying sequences where selection of sequence elements is driven by visual stimuli 

(Abrahamse et al., 2010; Verwey et al., 2015; Verwey et al., 2018).  Instead, sensorimotor task 

learning elicited activation of only the SMA along with S1 and the right vermis and left and right 

lateral cerebellum.  This pattern demonstrates the increased complexity of motor commands that 

must be developed in acquisition of sensorimotor tasks (Hardwick et al., 2013).  Similar to 

Hardwick et al. (2013), Laird et al. (2011) distinguished different motor skills when describing 

neural networks associated with motor skill performance. Skills that predominantly involve fixed 

simple movement sequences (e.g., typing) involve premotor and supplementary motor cortices.  

However, Laird et al. (2011) describes two additional neural networks for more complex 

movement types based on the locus of upper-limb control.  Skills that predominantly involve 

sensorimotor adaptation to hand or finger movements (e.g., grasping) utilize a network 

consisting of M1, S1, and the cerebellum, due to high degree of error correction needed in fine 

control of so-called haptic skills.  Prehension skills are more complex than haptic skills as they 

include arm movement control as when objects must be reached for prior to grasping them.  



Immink, Verwey & Wright (2020), 10 

 

Accordingly, these more complex skills supplement the M1-S1-cerebellar network with medial 

superior parietal activity.   

 

11.2.3 Brain activity underlying automated skill performance  

Neuroimaging studies describing brain changes associated with motor skill learning 

illustrate neural adaptations that preceded skill automatization.  Early experience in performing 

novel skills, relies heavily on activity in the anterior frontal lobe regions, which are associated 

with conscious attentional processes, error correction mechanisms, and the subjective experience 

of effortful performance.   These regions are also associated with explicit forms of motor 

learning that are more resource demanding than implicit forms that do not require conscious 

awareness (Grafton et al., 1995; Doyon et al., 1996).  However, most of this work has 

concentrated on the early stages of learning (see Lohse et al., 2014) in contrast to the automatic 

stage.  Thus, much of what is currently understood about functional brain changes underlying 

skill automaticity is based on studies addressing learning, not automated performance. Only a 

few neuroimaging studies have directly assessed the neural correlates of skill automaticity based 

on dual-task interference assessment (Pashler, 1994; Ashby & Crossley, 2012). 

 In all, six neuroimaging studies have applied dual-task interference assessment to 

determine skill automaticity (Wu et al., 2004; Lehericy et al., 2005; Poldrack et al., 2005; 

Puttemans et al., 2005; Wu & Hallett, 2005; Wu et al., 2008).  Five of these have evaluated 

automaticity of sequenced finger movements (Wu et al., 2004; Lehericy et al., 2005; Poldrack et 

al., 2005; Wu & Hallett, 2005; Wu et al., 2008) while Puttemans et al. (2005) evaluated 

automaticity of a complex bimanual coordination task involving wrist flexion and extension.  

Comparison of changes in neural activity from early to automatic stages, revealed a pattern 

similar to that observed in early to late learning comparisons (Lohse et al., 2014).  Namely, 

automaticity, as assessed by the dual-task interference criteria, was associated with decreased 

activity in the DLPFC and premotor cortices (preSMA, vPMC), cerebellum and precuneus (see 

Figure 11.4).  Similar regional activity in late learning (Lohse et al., 2014) and skill automaticity 

(Wu et al., 2004; Lehericy et al., 2005; Poldrack et al., 2005; Puttemans et al., 2005; Wu & 

Hallett, 2005; Wu et al., 2008) might give the impression that there is relatively little change in 

neural activity between late learning and automatic stages.  However, regional activation in later 

learning and automaticity might be due to entirely different functional roles (Little et al., 2004).   

As such, similar patterns of regional activation might conceal ongoing neural changes that take 

place between late learning and automaticity. 

 

------------------------------------- 

Insert Figure 11.4 About Here 

------------------------------------- 

 

Neuroimaging studies of automatic motor skill performance reported reduction in anterior 

cingulate cortex (ACC) activity from early to automatic skill performance stages.  The ACC 

functions along with the DLPFC to control attention (Kondo et al., 2004) and is involved in error 

monitoring and correction during performance (Carter et al., 1998).  To allow the acquisition of 

new movement patterns, the ACC is also thought to be involved in suppression of previously 

established movement patterns (Swinnen, 2002). 

In contrast to previous reports of the importance of M1 activity for performing well-

learned motor skills (Grafton et al., 1995; Hazeltine et al., 1997), Puttemans et al. (2005) 
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reported decreased M1 activity at the autonomous stage.  This finding was consistent with 

decreased M1 activity in the late skill learning stage reported in a meta-analysis of neural 

changes across skill learning stages reported by Lohse et al. (2014).  As discussed previously, 

differences in neural activity between studies might relate to different skill performance 

strategies (Verwey et al., 2015) or might relate to task specific motor control demands (Laird et 

al., 2011; Hardwick et al., 2013).   Differences in performance strategies and motor control 

demands might engage functionally different cortico-striatal neural circuits (Doyon et al., 2002; 

Doyon et al., 2003) resulting in disparate changes in regional activity.  For example, Lehericy et 

al. (2005) reported reduced activity in the cortico-striatal circuit but only in relation to premotor 

cortices and the dorsal putamen.  In contrast, activity in the posterior putamen increased 

(Lehericy et al., 2005).  The dorsal and posterior putamen have been differentiated based on their 

involvement in associative and sensorimotor forms of learning (Jueptner et al., 1997a; Lehericy 

et al., 2005; Florio et al., 2018).  Connectivity between associative and premotor cortices 

(vPMC) and the dorsal striatum is thought to underlie associative learning while connectivity 

between premotor (dPMC), motor and sensory cortices and the posterior putamen regulates 

sensorimotor learning as well as production of well-learned skills (Lehericy et al., 2005; Yin & 

Knowlton, 2006; Wu et al., 2015; see Figure 11.5, panels A and B).  There is some debate on 

how associative and sensorimotor learning processes occur.  In contrast to a serial shift from 

associative to sensorimotor processes (Hikosaka et al., 1999; Floyer-Lea & Matthews, 2005; 

Poldrack et al., 2005; Yin et al., 2009; Lohse et al., 2014; Figure 11.5, panel C), others have 

argued that associative and sensorimotor processes run in parallel during motor skill learning 

(Thorn et al., 2010; Thorn & Graybiel, 2014; Kupferschmidt et al., 2017;  Figure 11.5, panel D). 

 

------------------------------------- 

Insert Figure 11.5 About Here 

------------------------------------- 

 

11.3 Expediting automaticity at the cost of learning: A cautionary tale from the contextual 

interference effect 

A natural extension of the discussion so far is that automaticity results from exposure to 

considerable amounts of training and coincides with the development of expertise. As noted 

earlier this is typically manifest as significant improvements in performance, while also 

exhibiting an absence of secondary task interference and the development of a motor 

representation, motor chunks, that exhibit some rigidity in the manner in which they are used 

(see Sakai et al., 2004).  One might assume then that training environments that quickly move 

individuals to display characteristics of automatic skilled performance would be desirable. 

Indeed, considerable experimental effort has been exerted to identify features of the training 

environment that might be modified in order to move the performer to a more automated 

behavior.  One feature in particular that has attracted attention over the past 30 years, studied 

under the rubric of the contextual interference (CI) effect, focuses on how training schedules for 

a set of related motor skills influences skill learning outcomes. (Shea & Morgan, 1979; Magill & 

Hall, 1990; Brady, 1998; Brady, 2004). 

During experiments addressing the impact of CI for learning, greater CI is often 

engineered by arranging training such that the learner executes a set of skills in an interleaved 

format. Interleaved training, as it is called, creates relatively high interference throughout 

training because of the rapid changes in task demands across training trials.  Conversely, 
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repetitive training creates less interference because it entails executing the same skill repeatedly 

prior to the introduction of other skills that will be practiced later in training (see Figure 11.6, 

panel A).   Repetitive training provides for very rapid gains in performance (see Figure 11.6, 

panle B).  This initial practice benefit of repetitive training is very robust has been observed in a 

wide variety of laboratory tasks (Shea & Morgan, 1979; Wright et al., 2005; Pauwels et al., 

2014) as well as applied situations (Goode & Magill, 1986; Smith & Davies, 1995; Ollis et al., 

2005).   In addition, the advantage of repetitive training for facilitating quick performance gains 

has been demonstrated for different subject populations (Del Rey, 1982; Porretta & O'Brien, 

1991), as well as in the clinical domain (Adams & Page, 2000; Knock et al., 2000; Wambaugh et 

al., 2014).  

 

------------------------------------- 

Insert Figure 11.6 About Here 

      ------------------------------------- 

 

11.3.1 Early performance automatization under repetitive training 

Importantly, for the purpose of the present discussion, individuals that are trained in a 

repetitive rather than interleaved training environment not only reveal superior skilled 

performance much earlier in training but display characteristics of automated performance.  For 

example, Li and Wright (2000) used a dual-task paradigm to pair a secondary choice reaction 

time (CRT) task that involved tone discrimination with the acquisition of a set of motor sequence 

skills acquired in either an interleaved or repetitive training format.  During both training 

formats, the secondary CRT task was periodically presented shortly after the participant was 

informed about the particular motor sequence to be performed on the next trial presumably while 

the performer engaged in task preparation.  Li and Wright hypothesized that the observed 

efficacy of repetitive training for skill acquisition would coincide with reduced attention 

demands reflected in lower dual-task cost relative to the alternative, interleaved training.  The 

results supported this hypothesis indicating roughly 20% lower attention demand in conjunction 

with significantly greater performance improvement during repetitive as opposed to interleaved 

training.  This finding was consistent with earlier reports for the need of much shorter inter-trial 

intervals during repetitive as opposed to interleaved training (see, Immink & Wright, 1998).  

Taken together, the implication of these data is that repetitive schedule can be used as an 

efficient format for training because performance improves at a relatively fast rate and at low 

cognitive cost. 

It was proposed earlier that part of the reduction in attentional load during the learning of 

perceptual-motor skills was the development of units of action, referred to as motor chunks 

(Verwey, 1999; Verwey et al., 2015).  This has been reported to involve the compilation of 

individual movement elements being compiled into motor sequence representation that allow a 

skill to be executed with little cognitive demand (Klapp, 1995; Sakai et al., 2004; Verwey et al., 

2015).  This is a central feature of the C-SMB (Verwey et al., 2015) described earlier in which 

the motor chunks developed from extended practice are executed by a motor rather than central 

(cognitive) processor.  Thus, as sequential motor skills evolve with practice, the role of central-

cognitive processing resources changes from selecting and initiating individual movements to 

selecting and initiating integrated movement patterns. This processing change would be 

responsible, at least in part, for the evolution of reduced attention demands reflected in limited 

interference with other tasks (Verwey et al., 2015).  It is not surprising then that it has been 
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reported that individuals exposed to repetitive training exhibit characteristics of motor chunk 

development during the earliest phase of training.  Wright et al. (2004) had individuals practice 

both simple and complex motor sequences in either a repetitive or interleaved training format 

across 4-days of practice.  As expected, reaction time (RT) was initially longer when initiating 

the more complex sequences (Henry & Rogers, 1960; Klapp, 1995; Verwey, 1999). Participants 

assigned to interleaved training took a considerable portion of the four days of training to 

eventually initiate the more complex sequences with RT performance similar to that observed for 

the simpler sequence, indicative of motor chunk development.  In contrast, for the individuals 

that experienced repetitive training, the RT did not differ as a function of sequence complexity 

from a very early stage in training, suggesting that integration of the individual movement 

elements in the more complex sequence had occurred affording faster initiation of the skill.  

Thus, a repetitive training format appears to be an effective training protocol since it is 

associated with characteristics previously ascribed to automated skill production while also 

associated with the rapid attainment of successful performance. 

 

11.3.2 Performance automatization versus learning  

Given this brief overview of the merits of repetitive training, one would be forgiven for 

assuming that this training approach should result in successful skill acquisition and as such 

should demand widespread acceptance and use. However, when addressing learning, a critical 

goal is the establishment of a “relatively permanent changes in the capability for skilled 

behaviour”, which is commonly assessed through the use of long-term performance evaluation 

(Schmidt & Lee, 2005, p. 302).  This focus on long-term retention was more initially addressed 

as the performance-learning distinction (Salmoni et al., 1984) but has been formally revisited 

many times since (Schmidt & Bjork, 1992; Kantak & Winstein, 2012).  This distinction 

highlights the difference between transient influences on current behavior and those that reflect 

“relatively permanent” learning effects.  Immediate performance during the early phase of skill 

acquisition is very likely influenced by any number of transient features such as the availability 

of rich sources of feedback, motivation, and/or attention (Kantak & Winstein, 2012). To infer 

learning, it is argued that performance is assessed after sufficient time delays to allow temporary 

influences to dissipate.  This is often accomplished in the motor neuroscience literature by the 

inclusion of retention tests after varying temporal delays (e.g., 24-hr, 7-days, or even months) 

after training has concluded. 

The performance-learning distinction turns out to be critical when evaluating the CI 

effect.  As detailed earlier, repetitive training results in very rapid, and in some cases large gains 

in performance beyond that observed from engaging in interleaved training.  This benefit appears 

in part to be fostered by the development of motor chunks (Wright et al., 2004), which in turn, 

leads to reduced cognitive effort reflected in lower dual-task costs (Li & Wright, 2000).  

However, when delayed tests are administered, individuals exposed to repetitive training exhibit 

significant forgetting from the end of practice accompanied by the return of significant conscious 

effort.  This is not the case for learners that encounter interleaved training.  Sizeable demands are 

placed on attention throughout a significant portion of interleaved training (Li & Wright, 2000) 

which results in the development of resilient motor chunks that continue to be used up to 72-hrs 

after training supporting performance levels that are consistent with those observed at the end of 

training or in some cases slightly enhanced (Kim et al., 2018).  Herein lies the cautionary note.  

While repetitive training affords rapid improvements in performance in addition to revealing 

characteristics of automaticity (i.e., reduced conscious contribution, rapid adoption of motor 
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representations), one would surely be less convinced of the effectiveness of this training format 

for facilitating learning in terms of long-term performance (see Figure 11.6, panel B). 

 

11.3.3 Neural correlates of the CI effect  

An examination of the neural adaptations that occur across both interleaved and repetitive 

forms of practice are informative and may provide some guidance in thinking about automaticity 

in the context of skill acquisition and long-term retention.  Initial neurophysiologic evidence 

revealed that interleaved training participants maintained a constant level of activation within 

some motor planning regions while increasing the activity in other regions that have been 

reported to be central to improvement in motor sequence performance across practice.  Such 

changes have been described in detail in earlier sections (see Floyer-Lea & Matthews, 2005; 

Doyon et al., 2009; Dayan & Cohen, 2011; Penhune & Steele, 2012; Hardwick et al., 2013).  

Specifically, dPMC, vPMC, preSMA and the SMA premotor areas exhibited a blood-oxygenated 

level dependent (BOLD) signal that was at least 50% greater later in practice than earlier, 

implying significant action preparation continued late into interleaved training (see Figure 11.6, 

panel C).  The lateral premotor areas (dPMC, vPMC) have been recognized for the development 

of associations between arbitrary sensory stimuli and actions or the acquisition of novel 

stimulus-response rules which would certainly be an early challenge when learning a new set of 

motor sequences. The medial premotor areas, including preSMA and SMA, have been associated 

with selecting, retrieving, and organizing subsets or whole movement sequences at different 

points of skill acquisition (Gerloff et al., 1997; Verwey et al., 2002; Nachev et al., 2008).  

Heightened recruitment of the medial premotor areas is consistent with the claim that interleaved 

as opposed to repetitive training encourages the development and use of motor chunks (Immink 

& Wright, 2001; Wright et al., 2004; Abrahamse et al., 2013; Verwey et al., 2015).  Moreover, 

interleaved training results in a bilateral increase in activation in angular gyrus, superior parietal 

lobe, inferior temporal lobe, and precuneus with extended practice (Wymbs & Grafton, 2009; see 

Figure 11.6, panel C). These neural areas have been associated with the construction of novel 

visual–spatial mappings that would presumably be important for the acquisition of motor 

sequences (Hikosaka et al., 1999; Hikosaka et al., 2002).   

In the case of repetitive training, Wymbs and Grafton (2009) reported more limited 

activation as fewer regions were recruited for a shorter proportion of the total training duration. 

The behavioral findings from Immink and Wright (1998) suggest that this limited activation 

reflects disengagement from response preparation early in repetitive training.  Consequently, 

there is inadequate development of motor response information storage and retrieval processes 

needed to support long-term performance.  Neurophysiological and behavioral findings provide 

an account for the reduced attentional costs observed early in repetitive training by Li and 

Wright (2000).  While reduced attentional costs could be interpreted as reflecting a form of skill 

automaticity, it is clear that this form of automaticity has come at a significant cost to learning.  

The premature automaticity afforded by repetitive practice will eventually require greater 

investment of resources needed to perform in the long-term.  For example, during delayed 

retention test, Lin et al. (2011) reported more extensive recruitment of prefrontal, premotor, and 

parietal regions by individuals trained in the repetitive format than those trained under the 

interleaved format.  Thus, in contrast to repetitive practice, interleaved practice appears to have 

exhibited greater automaticity during delayed test performance and this advantage may be 

associated with the diverse set of other neural adaptations that are instigated by training under 
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high contextual interference.  For example, Lin et al. (2011) revealed heightened M1 excitability 

long after interleaved training was complete (i.e., for up to 72-hr) which has been argued to be a 

relatively permanent neuroplastic change that enhances memory retrieval possibly via an impact 

of post-practice consolidation (see Breton & Robertson, 2014; Tunovic et al., 2014).  A 

persistent change in M1 excitability resulting from interleaved training appears to occur 

concomitant with changes in resting state connectivity between the premotor cortex and other 

critical neural regions involved in consolidation of motor memories such as dorsolateral 

prefrontal cortex, inferior parietal lobule, hippocampus, putamen, and cerebellum. 

 

11.4 Summary 

The aim of this chapter was to describe the neural changes that afford the progression of 

skill performance from an early learning stage associated with slow, inefficient performance to 

the automatic stage, which is characterized by speeded performance and the absence of central 

resource demands.  Based on the neuroimaging findings reviewed here, one consistent change in 

neural activation associated with achieving skill automaticity occurs in an anterior to posterior 

direction within the frontal lobe.  Specifically, while early performance relies on activity in 

anterior frontal regions such as the DLPFC along with premotor cortices (vPMC, preSMA, 

SMA) and M1, skill automaticity only elicits sustained activation in most posterior region of the 

frontal lobe, the M1 (Wu et al., 2004; Lehericy et al., 2005; Poldrack et al., 2005; Puttemans et 

al., 2005; Wu & Hallett, 2005; Wu et al., 2008).  The anterior-posterior frontal lobe axis has been 

described as representing an associative-motor hierarchy for movement preparation and control 

(Koechlin et al., 2003; Fuster, 2004).  Thus, the anterior to posterior reduction in neural activity 

associated with automaticity can be interpreted as reflecting reduced dependence on associative 

processes. Within the motor levels of the hierarchy, reduced PMC and SMA activity also 

indicates changes in how automated skills are prepared. 

The neural changes underlying skill automaticity can be further understood through the 

C-SMB cognitive framework (Verwey et al., 2015).  Early learning activation of anterior frontal 

regions suggests initial reliance associative processes that utilize central-symbolic 

representations to prepare the response. Reliance on the central processor to prepare the response 

is slow and imparts high demands on limited central resources.  Finally, exposure to extensive 

practice is central to most accounts of the attainment of automaticity.  In the present chapter we 

highlighted the importance of designing practice that is geared toward recruiting the network of 

neural regions associated with early skill learning to ensure that the acquired sequential motor 

behavior can then be executed relatively attention-free for an extended period of time.     
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FIGURE 11.1  

 

 

 

 
 

 

Figure 11.1.  Key components of cognitive framework of sequential motor behavior (C-SMB; 

Verwey et al., 2015). This model describes the collaboration of perceptual, central, and motor 

processors in using (spatial, verbal) central-symbolic, and motor representations to execute 

motor sequences. 
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FIGURE 11.2 

 

Figure 11.2.  Key regions associated with early motor skill practice. M1 = primary motor cortex, 

CERB = cerebellum, DLPFC = dorsolateral prefrontal cortex, SMA = supplementary motor area 

(proper and preSMA), PMC = premotor cortex, S1 = somatosensory cortex.  
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FIGURE 11.3 

 

Figure 11.3.  The cognitive framework for sequential motor behavior (C-SMB; Verwey et al., 

2015) describes how movement elements can be organized into a target motor sequence (panel 

A). Initially, performance of an unfamiliar sequence (panel B) occurs via a reaction mode, where 

the target is reproduced based on presentation of a fixed series of movement element-specific 

stimuli. With practice, central-symbolic representations of the unfamiliar target sequence are 

developed allowing for motor buffer loading of the target sequence based on iterative translation 

of the symbolic representation.   Both reaction and central-symbolic modes are relatively slow 

and place high demands on cognitive resources.  Further practice allows for familiar sequences 

to be represented in long-term memory as an internal model of the target sequence (panel C). 

This enables the sequence to be performed via a chunk mode.  The chunk mode is relatively fast 

and incurs little cognitive resource costs due to reduced central-cognitive processing 

requirements. 
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FIGURE 11.4 

 

Figure 11.4.  Decreased and sustained functional region activation when early and automatic 

stages of skill learning are contrasted.  DLPFC = dorsolateral prefrontal cortex, ACC = anterior 

cingulate cortex, SMA = supplementary motor area (proper and preSMA), vPMC = ventral 

premotor cortex, M1 = primary motor cortex.  
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FIGURE 11.5 

 

 

 

Figure 11.5.  The dorsal and posterior putamen are functionally differentiated according to 

associative and sensorimotor forms of learning.  Associative learning (panel A) is based on 

circuits between the prefrontal cortices and the dorsal striatum while sensorimotor learning 

(panel B) is based on circuits between the motor cortices and the posterior putamen.  Motor skill 

learning has been described as involving a serial shift from associative to sensorimotor processes 

(panel C) or alternatively, parallel implementation of associative and sensorimotor processes 

(panel D). 

  



Immink, Verwey & Wright (2020), 21 

 

FIGURE 11.6 

 

Figure 11.6.  Under the contextual interference (CI) effect, practice scheduling of motor 

sequence variations under repetitive and interleaved schedules (panel A) results in distinct short-

term and long-term performance profiles (panel B) as well as differences in neural region 

recruitment (panel C).  As illustrated in panel B, repetitive training affords short-term 

performance gains but then results in long-term performance costs, particularly when long-term 

performance is tested under interleaved schedules (data is based on the seminal study by Shea & 

Morgan, 1979).  Panel C illustrates neural regions that have been associated with the CI effect. 

There is reduced recruitment of these regions under repetitive training in comparison to 

interleaved training.  However, when long-term performance is tested following repetitive 

training, these neural regions exhibit increased activity when compared to those previously 

exposed to interleaved training. ITL = inferior temporal lobe, AG = angular gyrus, SPL = 

superior parietal lobe, PCUN = precuneus, S1 = somatosensory cortex, SMA = supplementary 

motor area proper, preSMA = pre supplementary motor area, dPMC = dorsal premotor cortex, 

vPMC = ventral premotor cortex. 
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