142 research outputs found

    The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA

    Get PDF
    BACKGROUND: At present, the factors favoring transmission and amplification of West Nile Virus (WNV) within urban environments are poorly understood. In urban Atlanta, Georgia, the highly polluted waters of streams affected by combined sewer overflow (CSO) represent significant habitats for the WNV mosquito vector Culex quinquefasciatus. However, their contribution to the risk of WNV infection in humans and birds remains unclear.\ud \ud OBJECTIVES: Our goals were to describe and quantify the spatial distribution of WNV infection in mosquitoes, humans, and corvids, such as blue jays and American crows that are particularly susceptible to WNV infection, and to assess the relationship between WNV infection and proximity to CSO-affected streams in the city of Atlanta, Georgia.\ud \ud MATERIALS AND METHODS: We applied spatial statistics to human, corvid, and mosquito WNV surveillance data from 2001 through 2007. Multimodel analysis was used to estimate associations of WNV infection in Cx. quinquefasciatus, humans, and dead corvids with selected risk factors including distance to CSO streams and catch basins, land cover, median household income, and housing characteristics.\ud \ud RESULTS: We found that WNV infection in mosquitoes, corvids, and humans was spatially clustered and statistically associated with CSO-affected streams. WNV infection in Cx. quinquefasciatus was significantly higher in CSO compared with non-CSO streams, and WNV infection rates among humans and corvids were significantly associated with proximity to CSO-affected streams, the extent of tree cover, and median household income.\ud \ud CONCLUSIONS: Our study strongly suggests that CSO-affected streams are significant sources of Cx. quinquefasciatus mosquitoes that may facilitate WNV transmission to humans within urban environments. Our findings may have direct implications for the surveillance and control of WNV in other urban centers that continue to use CSO systems as a waste management practice

    Donepezil, Anti-Alzheimer's Disease Drug, Prevents Cardiac Rupture during Acute Phase of Myocardial Infarction in Mice

    Get PDF
    Background: We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI. Methods and Results: In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group. Conclusion: The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI

    Acquiring reading and vocabulary in Dutch and English: the effect of concurrent instruction

    Get PDF
    To investigate the effect of concurrent instruction in Dutch and English on reading acquisition in both languages, 23 pupils were selected from a school with bilingual education, and 23 from a school with education in Dutch only. The pupils had a Dutch majority language background and were comparable with regard to social-economic status (SES). Reading and vocabulary were measured twice within an interval of 1 year in Grade 2 and 3. The bilingual group performed better on most English and some of the Dutch tests. Controlling for general variables and related skills, instruction in English contributed significantly to the prediction of L2 vocabulary and orthographic awareness at the second measurement. As expected, word reading fluency was easier to acquire in Dutch with its relatively transparent orthography in comparison to English with its deep orthography, but the skills intercorrelated highly. With regard to cross-linguistic transfer, orthographic knowledge and reading comprehension in Dutch were positively influenced by bilingual instruction, but there was no indication of generalization to orthographic awareness or knowledge of a language in which no instruction had been given (German). The results of the present study support the assumption that concurrent instruction in Dutch and English has positive effects on the acquisition of L2 English and L1 Dutch

    Pathways to child and adolescent psychiatric clinics: a multilevel study of the significance of ethnicity and neighbourhood social characteristics on source of referral

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Swedish society, as in many other societies, many children and adolescents with mental health problems do not receive the help they need. As the Swedish society becomes increasingly multicultural, and as ethnic and economic residential segregation become more pronounced, this study utilises ethnicity and neighbourhood context to examine referral pathways to child and adolescent psychiatric (CAP) clinics.</p> <p>Methods</p> <p>The analysis examines four different sources of referrals: family referrals, social/legal agency referrals, school referrals and health/mental health referrals. The referrals of 2054 children aged 11-19 from the Stockholm Child-Psychiatric Database were studied using multilevel logistic regression analyses.</p> <p>Results</p> <p>Results indicate that ethnicity played an important role in how children and adolescents were referred to CAP-clinics. Family referrals were more common among children and adolescents with a Swedish background than among those with an immigrant background. Referrals by social/legal agencies were more common among children and adolescents with African and Asian backgrounds. Children with Asian or South American backgrounds were more likely to have been referred by schools or by the health/mental health care sector. A significant neighbourhood effect was found in relation to family referrals. Children and adolescents from neighbourhoods with low levels of socioeconomic deprivation were more likely to be referred to CAP-clinics by their families in comparison to children from other neighbourhoods. Such differences were not found in relation in relation to the other sources of referral.</p> <p>Conclusions</p> <p>This article reports findings that can be an important first step toward increasing knowledge on reasons behind differential referral rates and uptake of psychiatric care in an ethnically diverse Swedish sample. These findings have implications for the design and evaluation of community mental health outreach programs and should be considered when developing measures and strategies intended to reach and help children with mental health problems. This might involve providing information about the availability and accessibility of health care for children and adolescents with mental health problems to families in certain neighbourhoods and with different ethnic backgrounds.</p

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (ÎŽ2H) and oxygen (ÎŽ18O) isotope ratios in body water. Additionally, we show that the ÎŽ2H and ÎŽ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis

    Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    Get PDF
    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 ÎŒM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.Charles A. Dana Foundation. Brain and Immuno-ImagingRaymond and Beverley Sackler FoundationNational Institutes of Health (U.S.) (grant R01-DA28299)National Institutes of Health (U.S.) (grant DP2-OD2441)National Institutes of Health (U.S.) (grant R01-GM068664)Jacobs Institute for Molecular Engineering for Medicine. Jacobs Institute for Molecular Engineering for MedicineNational Institutes of Health (U.S.) (grant R01-DE013023

    Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression

    Get PDF
    The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1, 2, 3, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome4, 5, 6. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression

    Home on the Range: Factors Explaining Partial Migration of African Buffalo in a Tropical Environment

    Get PDF
    Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call “expanders”. Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area

    Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Get PDF
    Background: Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide.Results: To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant insects. Phosphine-resistant adults also were resistant to knockdown by the pyrethroid deltamethrin, likely due to the increased cytochrome P450 expression.Conclusions: Overall, genes associated with the mitochondria were differentially expressed in resistant insects, and these differences may contribute to a reduction in overall metabolism and energy production and/or compensation in resistant insects. These data provide the first gene expression data on the response of phosphine-resistant and -susceptible insects to phosphine exposure, and demonstrate that RNA-Seq is a valuable tool to examine differences in insects that respond differentially to environmental stimuli.Peer reviewedEntomology and Plant Patholog

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    • 

    corecore