123 research outputs found

    Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5° C and 2° C global warming with a higher-resolution global climate model

    Get PDF
    We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’

    A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins

    Get PDF
    [EN] European agriculture and water policies require accurate information on climate change impacts on available water resources. Water accounting, that is a standardized documentation of data on water resources, is a useful tool to provide this information. Pan-European data on climate impacts do not recognize local anthropogenic interventions in the water cycle. Most European river basins have a specific toolset that is understood and used by local experts and stakeholders. However, these local tools are not versatile. Thus, there is a need for a common approach that can be understood by multi-fold users to quantify impact indicators based on local data and that can be used to synthesize information at the European level. Then, policies can be designed with the confidence that underlying data are backed-up by local context and expert knowledge. This work presents a simplified water accounting framework that allows for a standardized examination of climate impacts on water resource availability and use across multiple basins. The framework is applied to five different river basins across Europe. Several indicators are extracted that explicitly describe green water fluxes versus blue water fluxes and impacts on agriculture. The examples show that a simplified water accounting framework can be used to synthesize basin-level information on climate change impacts which can support policymaking on climate adaptation, water resources and agriculture.This research was funded by Horizon 2020 IMPREX project, grant number 641811Hunink, J.; Simons, G.; Suárez-Almiñana, S.; Solera Solera, A.; Andreu Álvarez, J.; Giuliani, M.; Zamberletti, P.... (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water. 11(10):1-29. https://doi.org/10.3390/w11101976S1291110Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., … van Vliet, M. T. H. (2018). Climate Impacts in Europe Under +1.5°C Global Warming. Earth’s Future, 6(2), 264-285. doi:10.1002/2017ef000710Koutroulis, A. G., Grillakis, M. G., Daliakopoulos, I. N., Tsanis, I. K., & Jacob, D. (2016). Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete. Journal of Hydrology, 532, 16-28. doi:10.1016/j.jhydrol.2015.11.015Dezsi, Ş., Mîndrescu, M., Petrea, D., Rai, P. K., Hamann, A., & Nistor, M.-M. (2018). High-resolution projections of evapotranspiration and water availability for Europe under climate change. International Journal of Climatology, 38(10), 3832-3841. doi:10.1002/joc.5537Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., … Cid, A. (2016). Multi-hazard assessment in Europe under climate change. Climatic Change, 137(1-2), 105-119. doi:10.1007/s10584-016-1661-xRuosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., & Peltola, H. (2017). Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 50(3-4), 1177-1192. doi:10.1007/s00382-017-3671-4Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acacio, V., … Van Lanen, H. A. J. (2015). Impacts of European drought events: insights from an international database of text-based reports. doi:10.5194/nhessd-3-5453-2015Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M., Vidal, J., … Van Loon, A. F. (2016). Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 30(17), 3097-3104. doi:10.1002/hyp.10838Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610-614. doi:10.1038/nclimate2228Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113-124. doi:10.1016/j.agwat.2015.03.014Llop, M., & Ponce-Alifonso, X. (2016). Water and Agriculture in a Mediterranean Region: The Search for a Sustainable Water Policy Strategy. Water, 8(2), 66. doi:10.3390/w8020066Escribano Francés, G., Quevauviller, P., San Martín González, E., & Vargas Amelin, E. (2017). Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science & Policy, 69, 1-12. doi:10.1016/j.envsci.2016.12.006Bastiaanssen, W. G. M., & Steduto, P. (2017). The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of The Total Environment, 575, 595-611. doi:10.1016/j.scitotenv.2016.09.032Simons, G. W. H. (Gijs), Bastiaanssen, W. G. M. (Wim), & Immerzeel, W. W. (Walter). (2015). Water reuse in river basins with multiple users: A literature review. Journal of Hydrology, 522, 558-571. doi:10.1016/j.jhydrol.2015.01.016Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water, Air, & Soil Pollution, 228(7). doi:10.1007/s11270-017-3425-2Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management, 217, 426-439. doi:10.1016/j.agwat.2019.03.017Hoekstra, A., Chapagain, A., & van Oel, P. (2017). Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water, 9(6), 438. doi:10.3390/w9060438Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355. doi:10.1007/s10584-015-1570-4Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., … Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421-426. doi:10.1038/s41558-018-0138-5Panagopoulos, Y., Stefanidis, K., Faneca Sanchez, M., Sperna Weiland, F., Van Beek, R., Venohr, M., … Birk, S. (2019). Pan-European Calculation of Hydrologic Stress Metrics in Rivers: A First Assessment with Potential Connections to Ecological Status. Water, 11(4), 703. doi:10.3390/w11040703Macknick, J., Newmark, R., Heath, G., & Hallett, K. C. (2012). Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environmental Research Letters, 7(4), 045802. doi:10.1088/1748-9326/7/4/045802Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Wyser, K., & Betts, R. A. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613-614, 271-286. doi:10.1016/j.scitotenv.2017.09.074Lobanova, A., Liersch, S., Nunes, J. P., Didovets, I., Stagl, J., Huang, S., … Krysanova, V. (2018). Hydrological impacts of moderate and high-end climate change across European river basins. Journal of Hydrology: Regional Studies, 18, 15-30. doi:10.1016/j.ejrh.2018.05.003Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., … Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217. doi:10.5194/hess-21-6201-2017Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., … Kollet, S. (2019). Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation. Hydrology and Earth System Sciences, 23(1), 277-301. doi:10.5194/hess-23-277-2019Haro, D., Solera, A., Paredes, J., & Andreu, J. (2014). Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain). Water Resources Management, 28(11), 3801-3814. doi:10.1007/s11269-014-0710-3Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology and Earth System Sciences, 22(4), 2409-2424. doi:10.5194/hess-22-2409-2018Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., & Jacob, D. (2013). Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology, 479, 146-158. doi:10.1016/j.jhydrol.2012.11.055Vargas-Amelin, E., & Pindado, P. (2014). The challenge of climate change in Spain: Water resources, agriculture and land. Journal of Hydrology, 518, 243-249. doi:10.1016/j.jhydrol.2013.11.035Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., & Castelletti, A. (2016). Is robustness really robust? How different definitions of robustness impact decision-making under climate change. Climatic Change, 135(3-4), 409-424. doi:10.1007/s10584-015-1586-9Grindlay, A. L., Zamorano, M., Rodríguez, M. I., Molero, E., & Urrea, M. A. (2011). Implementation of the European Water Framework Directive: Integration of hydrological and regional planning at the Segura River Basin, southeast Spain. Land Use Policy, 28(1), 242-256. doi:10.1016/j.landusepol.2010.06.005Quevauviller, P., Barceló, D., Beniston, M., Djordjevic, S., Harding, R. J., Iglesias, A., … Werner, M. (2012). Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of The Total Environment, 440, 167-177. doi:10.1016/j.scitotenv.2012.07.055Edens, B., & Graveland, C. (2014). Experimental valuation of Dutch water resources according to SNA and SEEA. Water Resources and Economics, 7, 66-81. doi:10.1016/j.wre.2014.10.003Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Gouveia, C. M., Trigo, R. M., Beguería, S., & Vicente-Serrano, S. M. (2017). Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, 15-27. doi:10.1016/j.gloplacha.2016.06.011Borrego-Marín, M., Gutiérrez-Martín, C., & Berbel, J. (2016). Water Productivity under Drought Conditions Estimated Using SEEA-Water. Water, 8(4), 138. doi:10.3390/w8040138Vardon, M., Lenzen, M., Peevor, S., & Creaser, M. (2007). Water accounting in Australia. Ecological Economics, 61(4), 650-659. doi:10.1016/j.ecolecon.2006.07.033Pedro-Monzonís, M., del Longo, M., Solera, A., Pecora, S., & Andreu, J. (2016). Water Accounting in the Po River Basin Applied to Climate Change Scenarios. Procedia Engineering, 162, 246-253. doi:10.1016/j.proeng.2016.11.051Momblanch, A., Andreu, J., Paredes-Arquiola, J., Solera, A., & Pedro-Monzonís, M. (2014). Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain). Journal of Hydrology, 519, 3369-3385. doi:10.1016/j.jhydrol.2014.10.002Karimi, P., Bastiaanssen, W. G. M., & Molden, D. (2012). Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements. doi:10.5194/hessd-9-12879-2012Karimi, P., Bastiaanssen, W. G. M., Molden, D., & Cheema, M. J. M. (2013). Basin-wide water accounting based on remote sensing data: an application for the Indus Basin. Hydrology and Earth System Sciences, 17(7), 2473-2486. doi:10.5194/hess-17-2473-2013Orth, R., & Destouni, G. (2018). Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nature Communications, 9(1). doi:10.1038/s41467-018-06013-7Van den Hurk, B., Hirschi, M., Schär, C., Lenderink, G., van Meijgaard, E., van Ulden, A., … Jones, R. (2005). Soil Control on Runoff Response to Climate Change in Regional Climate Model Simulations. Journal of Climate, 18(17), 3536-3551. doi:10.1175/jcli3471.1Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., & Rummukainen, M. (2001). Climate change impacts on runoff in Sweden-assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research, 16, 101-112. doi:10.3354/cr016101Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9(1), 5-23. doi:10.1016/s0959-3780(98)00015-6Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., … Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), 2071-2075. doi:10.1002/grl.50495Destouni, G., & Prieto, C. (2018). Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water, 10(11), 1645. doi:10.3390/w10111645Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2017). Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management. Science of The Total Environment, 603-604, 126-139. doi:10.1016/j.scitotenv.2017.05.259Huang, Z., Hejazi, M., Tang, Q., Vernon, C. R., Liu, Y., Chen, M., & Calvin, K. (2019). Global agricultural green and blue water consumption under future climate and land use changes. Journal of Hydrology, 574, 242-256. doi:10.1016/j.jhydrol.2019.04.046Kahil, M. T., Connor, J. D., & Albiac, J. (2015). Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecological Economics, 120, 226-233. doi:10.1016/j.ecolecon.2015.11.004Velasco-Muñoz, J., Aznar-Sánchez, J., Belmonte-Ureña, L., & López-Serrano, M. (2018). Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water, 10(4), 377. doi:10.3390/w10040377Berbel, J., & Mateos, L. (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems, 128, 25-34. doi:10.1016/j.agsy.2014.04.002Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., & Paredes-Arquiola, J. (2014). Water Accounts and Water Stress Indexes in the European Context of Water Planning: The Jucar River Basin. Procedia Engineering, 89, 1470-1477. doi:10.1016/j.proeng.2014.11.431Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., … Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 «Level of water stress». Science of The Total Environment, 613-614, 218-232. doi:10.1016/j.scitotenv.2017.09.056Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., … Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth’s Future, 5(6), 545-559. doi:10.1002/2016ef000518Wada, Y., van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., & Bierkens, M. F. P. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47(7). doi:10.1029/2010wr009792Eekhout, J. P. C., Hunink, J. E., Terink, W., & de Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935-5946. doi:10.5194/hess-22-5935-2018Pellicer-Martínez, F., & Martínez-Paz, J. M. (2018). Climate change effects on the hydrology of the headwaters of the Tagus River: implications for the management of the Tagus–Segura transfer. Hydrology and Earth System Sciences, 22(12), 6473-6491. doi:10.5194/hess-22-6473-2018Navarro, T. (2018). Water reuse and desalination in Spain – challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153-168. doi:10.2166/wrd.2018.043García-Rubio, M. A., & Guardiola, J. (2012). Desalination in Spain: A Growing Alternative for Water Supply. International Journal of Water Resources Development, 28(1), 171-186. doi:10.1080/07900627.2012.642245Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-

    Functional relationships reveal differences in the water cycle representation of global water models

    Get PDF
    Global water models are widely used for policy-making and in scientific studies, but substantial inter-model differences highlight the need for additional evaluation. Here we evaluate global water models by assessing so-called functional relationships between system forcing and response variables. The more widely used comparisons between observed and simulated fluxes provide insight into model behavior for the representative area of an observation, and can therefore potentially improve the model for that area. Functional relationships, by contrast, aim to capture how system forcing and response variables co-vary across large scales, and thus offer the potential for model improvement over large areas. Using 30-year annual averages from 8 global water models, we quantify such functional relationships by calculating correlations between key forcing variables (precipitation, net radiation) and water fluxes (actual evapotranspiration, groundwater recharge, total runoff). We find strong disagreement for groundwater recharge, some disagreement for total runoff, and the best agreement for evapotranspiration. Observation- and theory-derived functional relationships show varying agreements with models, indicating where model representations and our process understanding are particularly uncertain. Overall, our results suggest that model improvement is most important for the representation of energy balance processes, recharge processes, and generally for model behavior in dry and cold regions. We argue that advancing our ability to simulate global hydrology requires a better perceptual understanding of the global water cycle. To evaluate if our models match that understanding, we should explore alternative evaluation strategies, such as the use of functional relationships

    Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe

    Get PDF
    Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe-indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project's results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way

    The challenge of unprecedented floods and droughts in risk management

    Get PDF
    Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3

    Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe

    Get PDF
    Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe—indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project’s results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way
    corecore