72 research outputs found

    Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules

    Get PDF
    Several abiotic factors cause molecular damage to plants either directly or through the accumulation of reactive oxygen species such as hydrogen peroxide (H2O2). We investigated if application of nitric oxide (NO) donor 2,2â€Č- (hydroxynitrosohydrazono) bis-ethanimine (DETA/NO) could reduce the toxic effect resulting from short-term salt stress. Salt treatment (150 mM NaCl) alone and in combination with 10 ÎŒM DETA/NO or 10 ÎŒM DETA were given to matured soybean root nodules for 24 h. Salt stress resulted in high H2O2 level and lipid peroxidation while application of DETA/NO effectively reduced H2O2 level and prevented lipid peroxidation in the soybean root nodules. NO treatment increased the activities of ascorbate peroxidase and dehydroascorbate reductase under salt stress. Whereas short-term salt stress reduced AsA/DHAsA and GSH/GSSG ratios, application of the NO donor resulted in an increase of the reduced form of the antioxidant metabolites thus increasing the AsA/DHAsA and GSH/GSSG ratios. Our data suggests a protective role of NO against salt stress.Web of Scienc

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    On the relation between the activation energy for electron attachment reactions and the size of their thermal rate coefficients

    Get PDF
    Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature Te and the molecular temperature TG are assumed to be in thermal equilibrium, i.e., T = Te = TG). This rise is frequently modeled by the Arrhenius equation k(T) = kA exp[−Ea/(kBT)], and an activation energy Ea is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Foryƛ, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(Ea; T≈ 300 K) = k1 exp[−Ea/E0]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH3Cl, CH3Br, CF3Cl, and CH2Cl2 (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck–Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases are discussed for which the proposed relation does not apply

    Decomposition of methionine by low energy electrons

    No full text
    In this work, we present the results from low energy (<12 eV) electron impact on isolated methionine, Met. We show that dissociative electron attachment is the operative mechanism for the sulfur content amino-acid fragmentation. The two most dominant fragments are attributed to the (Met-H)− and (C4NOH5)− ions that are formed at energy below 2 eV. The formation of the latter anion is accompanied by the loss of neutral counterparts, which are most likely a water molecule and highly toxic methanethiol, CH3SH. Further fragments are associated with the damage at the sulfur end of the amino acid, producing the methyl sulfide anion CH3S− or sulfur containing neutrals. In the context of radiation induced damage to biological material at the nano-scale level, the present interest of methionine arises from the implication of the molecule in biological processes (e.g., S-adenosyl methionine for the stimulation of DNA methyltransferase reactions or protein synthesis)
    • 

    corecore