37 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Decomposition of turbulent velocity fields in an SI engine

    No full text
    In this study, the turbulence filter, the phase averaging and the proper orthogonal decomposition methods are used to decompose experimentally measured turbulent velocity fields in an SI engine. The radial and circumferential turbulent velocity fields were measured using hot wire anemometer under motored conditions at different engine configurations. The decomposed results of each technique are compared with each other. In addition, the obtained organized and turbulence motions and their energy spectra are examined. Finally, coherent structures of velocity fields and their activities are investigated

    Routing of individual polymers in designed patterns

    No full text
    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could therefore be used to create molecular-scale electronic or optical wires in arbitrary geometries

    POSS

    No full text
    In this study, it was aimed to investigate octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) incorporation into natural rubber (NR)/butadiene rubber (BR) elastomer blends as a potential compatibilizer. The effects of OV-POSS loading levels on the thermal, mechanical, morphological, and dynamic-mechanical properties of elastomer blends were explored. Fourier-Transform Infrared Spectrometer (FTIR), Temperature Scanning Stress Relaxation (TSSR), and Differential Scanning Calorimetry (DSC) results revealed the conceivable effect of OV-POSS nanoparticles in the vulcanization through reacting with sulfur and/or elastomers. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and tensile test measurements supported the improvement of mechanical properties due to homogeneous dispersion at low loading levels. On the other hand, high amount of OV-POSS incorporation (7 and 10 phr) resulted in a decrease in mechanical properties, owing to the agglomeration of nanoparticles. According to contact angle and Dynamic mechanical analysis (DMA) results, it could be concluded that OV-POSS nanoparticles were localized at the interface of the elastomers and enabled the compatibilization of immiscible NR/BR blends
    corecore