840 research outputs found
Thermal Hadron Production in High Energy Heavy Ion Collisions
We provide a method to test if hadrons produced in high energy heavy ion
collisions were emitted at freeze-out from an equilibrium hadron gas. Our
considerations are based on an ideal gas at fixed temperature , baryon
number density , and vanishing total strangeness. The constituents of this
gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay
according to the experimentally observed branching ratios. The ratios of the
various resulting hadron production rates are tabulated as functions of
and . These tables can be used for the equilibration analysis of any heavy
ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92
and Bielefeld preprint BI-TP 92/0
Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds
The current study was initiated to evaluate the efficacy of physical methods (hot water, aerated steam, electron treatment) and agents of natural origin (resistance inducers, plant derived products, micro-organisms) as seed treatments of carrots for control of Alternaria dauci and A. radicina. Control of both Alternaria species by seed treatment with the resistance inducers was generally poor. Results were also not satisfactory with most of the formulated commercial micro-organism preparations. Based on the average of five field trials, one of these, BA 2552 (Pseudomonas chlororaphis), provided a low but significant increase in plant stand. Among the experimental micro-organisms, the best results were obtained with Pseudomonas sp. strain MF 416 and Clonostachys rosea strain IK726. A similar level of efficacy was provided by seed treatment with an emulsion (1%) of thyme oil in water. Good and consistent control was generally achieved with the physical methods aerated steam, hot water and electron treatment. Aerated steam treatment was, apart from the thiram-containing chemical standard, the best single treatment, and its performance may at least partially be due to extensive pre-testing, resulting in dosages optimally adapted to the respective seed lot. In some of the experiments the effect of the hot water treatment, which was tested at a fixed, not specifically adapted dosage, was significantly improved when combined with a Pseudomonas sp. MF 416 or C. rosea IK726 treatment. The results are discussed in relation to the outcome of experiments in which the same seed treatment methods and agents were tested in other seed-borne vegetable pathosystems
Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity
AbstractThe physicochemical properties and biological activities of rough mutant lipopolysaccharides Re (LPS Re) as preformed divalent cation (Mg2+, Ca2+, Ba2+) salt form or as natural or triethylamine (Ten+)-salt form under the influence of externally added divalent cations were investigated using complementary methods: Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopic (FT-IR) measurements for the β↔α gel to liquid crystalline phase behaviour of the acyl chains of LPS, synchrotron radiation X-ray diffraction studies for their aggregate structures, electron density calculations of the LPS bilayer systems, and LPS-induced cytokine (interleukin-6) production in human mononuclear cells. The divalent cation salt forms of LPS exhibit considerable changes in physicochemical parameters such as acyl chain mobility and aggregate structures as compared to the natural or monovalent cation salt forms. Concomitantly, the biological activity was much lower in particular for the Ca2+- and Ba2+-salt forms. This decrease in activity results mainly from the conversion of the unilamellar/cubic aggregate structure of LPS into a multilamellar one. The reduced activity also clearly correlates with the higher order – lower mobility – of the lipid A acyl chains. Both effects can be understood by an impediment of the interactions of LPS with binding proteins such as lipopolysaccharide-binding protein (LBP) and CD14 due to the action of the divalent cations
STOVE: Seed treatments for organic vegetable production
The aim of the EU-financed research project „STOVE“ (Seed Treatments for Organic Vegetable Production) is to evaluate different methods potentially suited for seed treatment of vegetables in organic farming regarding their efficacy, to optimise these methods, and where feasible to combine them with each other. Scientists from seven European research institutions and a producer of organic vegetable seeds carry out the project
Appraising the Effectiveness of a Simple Evaluational Approach to Problems of Retardation and Behavior in Childhood
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67035/2/10.1177_000992287201100921.pd
Effects of hydrostaticity on the structural stability of carbonates at lower mantle pressures the case study of dolomite
We have conducted high pressure far-infrared absorbance and Raman spectroscopic investigations on a natural iron-free dolomite sample up to 40 GPa. Comparison between the present observations and literature results unraveled the effect of hydrostatic conditions on the high pressure dolomite polymorph adopted close to 40 GPa, i.e. the triclinic Dol-IIIc modification. In particular, non-hydrostatic conditions impose structural disorder at these pressures, whereas hydrostatic conditions allow the detection of an ordered Dol-IIIc vibrational response. Hence, hydrostatic conditions appear to be a key ingredient for modeling
carbon subduction at lower mantle conditions. Our
complementary first-principles calculations verified the far-infrared vibrational response of the ambient- and high pressure dolomite phases.This study was partly supported by a Grant from Deutsche Forschungsgemeinschaft (DFG) within the
Research Unit FOR2125 CarboPaT under Grants KO1260/16 and JA1469/9
Electromagnetic vertex function of the pion at T > 0
The matrix element of the electromagnetic current between pion states is
calculated in quenched lattice QCD at a temperature of . The
nonperturbatively improved Sheikholeslami-Wohlert action is used together with
the corresponding improved vector current. The electromagnetic
vertex function is extracted for pion masses down to and
momentum transfers .Comment: 17 pages, 8 figure
Sensitivity of the Mott Transition to Non-cubic Splitting of the Orbital Degeneracy: Application to NH3 K3C60
Within dynamical mean-field theory, we study the metal-insulator transition
of a twofold orbitally degenerate Hubbard model as a function of a splitting
\Delta of the degeneracy. The phase diagram in the U-\Delta plane exhibits
two-band and one-band metals, as well as the Mott insulator. The correlated
two-band metal is easily driven to the insulator state by a strikingly weak
splitting \Delta << W of the order of the Kondo-peak width zW, where z << 1 is
the metal quasiparticle weight. The possible relevance of this result to the
insulator-metal transition in the orthorhombic expanded fulleride NH3 K3C60 is
discussed.Comment: revtex, 15 pages including 6 ps figures. Submitted to Phys. Rev.
- …