Within dynamical mean-field theory, we study the metal-insulator transition
of a twofold orbitally degenerate Hubbard model as a function of a splitting
\Delta of the degeneracy. The phase diagram in the U-\Delta plane exhibits
two-band and one-band metals, as well as the Mott insulator. The correlated
two-band metal is easily driven to the insulator state by a strikingly weak
splitting \Delta << W of the order of the Kondo-peak width zW, where z << 1 is
the metal quasiparticle weight. The possible relevance of this result to the
insulator-metal transition in the orthorhombic expanded fulleride NH3 K3C60 is
discussed.Comment: revtex, 15 pages including 6 ps figures. Submitted to Phys. Rev.