12,607 research outputs found
Star Formation in Violent and Normal Evolutionary Phases
Mergers of massive gas-rich galaxies trigger violent starbursts that - over
timescales of Myr and regions kpc - form massive and compact
star clusters comparable in mass and radii to Galactic globular clusters. The
star formation efficiency is higher by 1 - 2 orders of magnitude in these
bursts than in undisturbed spirals, irregulars or even BCDs. We ask the
question if star formation in these extreme regimes is just a scaled-up version
of the normal star formation mode of if the formation of globular clusters
reveals fundamentally different conditions.Comment: 4 pages To appear in The Evolution of Galaxies. II. Basic building
blocks, eds. M. Sauvage, G. Stasinska, L. Vigroux, D. Schaerer, S. Madde
X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system
Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g⁻¹ Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments
Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities
Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains. © 2009 Ermentrout et al
Evaluating Maintainability Prejudices with a Large-Scale Study of Open-Source Projects
Exaggeration or context changes can render maintainability experience into
prejudice. For example, JavaScript is often seen as least elegant language and
hence of lowest maintainability. Such prejudice should not guide decisions
without prior empirical validation. We formulated 10 hypotheses about
maintainability based on prejudices and test them in a large set of open-source
projects (6,897 GitHub repositories, 402 million lines, 5 programming
languages). We operationalize maintainability with five static analysis
metrics. We found that JavaScript code is not worse than other code, Java code
shows higher maintainability than C# code and C code has longer methods than
other code. The quality of interface documentation is better in Java code than
in other code. Code developed by teams is not of higher and large code bases
not of lower maintainability. Projects with high maintainability are not more
popular or more often forked. Overall, most hypotheses are not supported by
open-source data.Comment: 20 page
Polarization of coalitions in an agent-based model of political discourse
Political discourse is the verbal interaction between political actors in a policy domain. This article explains the formation of polarized advocacy or discourse coalitions in this complex phenomenon by presenting a dynamic, stochastic, and discrete agent-based model based on graph theory and local optimization. In a series of thought experiments, actors compute their utility of contributing a specific statement to the discourse by following ideological criteria, preferential attachment, agenda-setting strategies, governmental coherence, or other mechanisms. The evolving macro-level discourse is represented as a dynamic network and evaluated against arguments from the literature on the policy process. A simple combination of four theoretical mechanisms is already able to produce artificial policy debates with theoretically plausible properties. Any sufficiently realistic configuration must entail innovative and path-dependent elements as well as a blend of exogenous preferences and endogenous opinion formation mechanisms
Nonlinear response of the vacuum Rabi resonance
On the level of single atoms and photons, the coupling between atoms and the
electromagnetic field is typically very weak. By employing a cavity to confine
the field, the strength of this interaction can be increased many orders of
magnitude to a point where it dominates over any dissipative process. This
strong-coupling regime of cavity quantum electrodynamics has been reached for
real atoms in optical cavities, and for artificial atoms in circuit QED and
quantum-dot systems. A signature of strong coupling is the splitting of the
cavity transmission peak into a pair of resolvable peaks when a single resonant
atom is placed inside the cavity - an effect known as vacuum Rabi splitting.
The circuit QED architecture is ideally suited for going beyond this linear
response effect. Here, we show that increasing the drive power results in two
unique nonlinear features in the transmitted heterodyne signal: the
supersplitting of each vacuum Rabi peak into a doublet, and the appearance of
additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings
ladder. These constitute direct evidence for the coupling between the quantized
microwave field and the anharmonic spectrum of a superconducting qubit acting
as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies
are available at http://www.eng.yale.edu/rslab/publications.htm
International Public Health Research Involving Interpreters: a Case Study from Bangladesh
Background: Cross-cultural and international research are important components of public health research, but the challenges of language barriers and working with interpreters are often overlooked, particularly in the case of qualitative research.
Methods: A case-study approach was used to explore experiences of working with an interpreter in Bangladesh as part of a research project investigating women's experiences of emergency obstetric care.
The case study: Data from the researcher's field notes provided evidence of experiences in working with an interpreter and show how the model of interviewing was adapted over time to give a more active role to the interpreter. The advantages of a more active role were increased rapport and "flow" in interviews. The disadvantages included reduced control from the researcher's perspective. Some tensions between the researcher and interpreter remained hard to overcome,
irrespective of the model used. Independent transcription and translation of the interviews also raised questions around accuracy in translation.
Conclusion: The issues examined in this case study have broader implications for public health research. Further work is needed in three areas: 1) developing effective relationships with interpreters; 2) the impact of the interpreter on the research process; and 3) the accuracy of the translation and level of analysis needed in any specific public health research. Finally, this paper highlights the importance to authors of reflecting on the potential impact of translation and interpretation on the research process when disseminating their research
Superconducting nanowire photon number resolving detector at telecom wavelength
The optical-to-electrical conversion, which is the basis of optical
detectors, can be linear or nonlinear. When high sensitivities are needed
single-photon detectors (SPDs) are used, which operate in a strongly nonlinear
mode, their response being independent of the photon number. Nevertheless,
photon-number resolving (PNR) detectors are needed, particularly in quantum
optics, where n-photon states are routinely produced. In quantum communication,
the PNR functionality is key to many protocols for establishing, swapping and
measuring entanglement, and can be used to detect photon-number-splitting
attacks. A linear detector with single-photon sensitivity can also be used for
measuring a temporal waveform at extremely low light levels, e.g. in
long-distance optical communications, fluorescence spectroscopy, optical
time-domain reflectometry. We demonstrate here a PNR detector based on parallel
superconducting nanowires and capable of counting up to 4 photons at
telecommunication wavelengths, with ultralow dark count rate and high counting
frequency
A computational study on altered theta-gamma coupling during learning and phase coding
There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus
On passion and moral behavior in achievement settings: The mediating role of pride
The Dualistic Model of Passion (Vallerand et al., 2003) distinguishes two types of passion: harmonious passion (HP) and obsessive passion (OP) that predict adaptive and less adaptive outcomes, respectively. In the present research, we were interested in understanding the role of passion in the adoption of moral behavior in achievement settings. It was predicted that the two facets of pride (authentic and hubristic; Tracy & Robins, 2007) would mediate the passion-moral behavior relationship. Specifically, because people who are passionate about a given activity are highly involved in it, it was postulated that they should typically do well and thus experience high levels of pride when engaged in the activity. However, it was also hypothesized that while both types of passion should be conducive to authentic pride, only OP should lead to hubristic pride. Finally, in line with past research on pride (Carver, Sinclair, & Johnson, 2010; Tracy et al., 2009), only hubristic pride was expected to negatively predict moral behavior, while authentic pride was expected to positively predict moral behavior. Results of two studies conducted with paintball players (N=163, Study 1) and athletes (N=296, Study 2) supported the proposed model. Future research directions are discussed in light of the Dualistic Model of Passion
- …
