On the level of single atoms and photons, the coupling between atoms and the
electromagnetic field is typically very weak. By employing a cavity to confine
the field, the strength of this interaction can be increased many orders of
magnitude to a point where it dominates over any dissipative process. This
strong-coupling regime of cavity quantum electrodynamics has been reached for
real atoms in optical cavities, and for artificial atoms in circuit QED and
quantum-dot systems. A signature of strong coupling is the splitting of the
cavity transmission peak into a pair of resolvable peaks when a single resonant
atom is placed inside the cavity - an effect known as vacuum Rabi splitting.
The circuit QED architecture is ideally suited for going beyond this linear
response effect. Here, we show that increasing the drive power results in two
unique nonlinear features in the transmitted heterodyne signal: the
supersplitting of each vacuum Rabi peak into a doublet, and the appearance of
additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings
ladder. These constitute direct evidence for the coupling between the quantized
microwave field and the anharmonic spectrum of a superconducting qubit acting
as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies
are available at http://www.eng.yale.edu/rslab/publications.htm