161 research outputs found

    Pathophysiological mechanisms for the respiratory syncytial virus-reactive airway disease link

    Get PDF
    There is substantial epidemiological evidence supporting the concept that respiratory syncytial virus (RSV) lower respiratory tract infection in infancy may be linked to the development of reactive airway disease (RAD) in childhood. However, much less is known concerning the mechanisms by which this self-limiting infection leads to airway dysfunction that persists long after the virus is cleared from the lungs. A better understanding of the RSV–RAD link may have important clinical implications, particularly because prevention of RSV lower respiratory tract infection may reduce the occurrence of RAD later in life. Among the mechanisms proposed to explain the chronic sequelae of RSV infection is the interaction between the subepithelial neural network of the airway mucosa and the cellular effectors of inflammatory and immune responses to the virus. The body of clinical literature linking RSV and RAD is reviewed herein, as are the cellular and molecular mechanisms of neuroimmune interactions and neural remodeling that may underlie this link, and the possibility that preventing the infection may result in a decreased incidence of its chronic sequelae

    Guidelines on acute gastroenteritis in children: a critical appraisal of their quality and applicability in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reasons for poor guideline adherence in acute gastroenteritis (AGE) in children in high-income countries are unclear, but may be due to inconsistency between guideline recommendations, lack of evidence, and lack of generalizability of the recommendations to general practice. The aim of this study was to assess the quality of international guidelines on AGE in children and investigate the generalizability of the recommendations to general practice.</p> <p>Methods</p> <p>Guidelines were retrieved from websites of professional medical organisations and websites of institutes involved in guideline development. In addition, a systematic search of the literature was performed. Articles were selected if they were a guideline, consensus statement or care protocol.</p> <p>Results</p> <p>Eight guidelines met the inclusion criteria, the quality of the guidelines varied. 242 recommendations on diagnosis and management were found, of which 138 (57%) were based on evidence.</p> <p>There is a large variety in the classification of symptoms to different categories of dehydration. No signs are generalizable to general practice.</p> <p>It is consistently recommended to use hypo-osmolar ORS, however, the recommendations on ORS-dosage are not evidence based and are inconsistent. One of 14 evidence based recommendations on therapy of AGE is based on outpatient research and is therefore generalizable to general practice.</p> <p>Conclusions</p> <p>The present study shows considerable variation in the quality of guidelines on AGE in children, as well as inconsistencies between the recommendations. It remains unclear how to asses the extent of dehydration and determine the preferred treatment or referral of a young child with AGE presenting in general practice.</p

    Adenosine-stress cardiac magnetic resonance imaging in suspected coronary artery disease: a net cost analysis and reimbursement implications

    Get PDF
    The health and economic implications of new imaging technologies are increasingly relevant policy issues. Cardiac magnetic resonance imaging (CMR) is currently not or not sufficiently reimbursed in a number of countries including Germany, presumably because of a limited evidence base. It is unknown, however, whether it can be effectively used to facilitate medical decision-making and reduce costs by serving as a gatekeeper to invasive coronary angiography. We investigated whether the application of CMR in patients suspected of having coronary artery disease (CAD) reduces costs by averting referrals to cardiac catheterization. We used propensity score methods to match 218 patients from a CMR registry to a previously studied cohort in which CMR was demonstrated to reliably identify patients who were low-risk for major cardiac events. Covariates over which patients were matched included comorbidity profiles, demographics, CAD-related symptoms, and CAD risk as measured by Morise scores. We determined the proportion of patients for whom cardiac catheterization was deferred based upon CMR findings. We then calculated the economic effects of practice pattern changes using data on cardiac catheterization and CMR costs. CMR reduced the utilization of cardiac catheterization by 62.4%. Based on estimated catheterization costs of € 619, the utilization of CMR as a gatekeeper reduced per-patient costs by a mean of € 90. Savings were realized until CMR costs exceeded € 386. Cost savings were greatest for patients at low-risk for CAD, as measured by baseline Morise scores, but were present for all Morise subgroups with the exception of patients at the highest risk of CAD. CMR significantly reduces the utilization of cardiac catheterization in patients suspected of having CAD. Per-patient savings range from € 323 in patients at lowest risk of CAD to € 58 in patients at high-risk but not in the highest risk stratum. Because a negative CMR evaluation has high negative predictive value, its application as a gatekeeper to cardiac catheterization should be further explored as a treatment option

    In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    Get PDF
    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively

    Amygdala circuitry mediating reversible and bidirectional control of anxiety

    Get PDF
    Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    Investigation of the Role of TNF-α Converting Enzyme (TACE) in the Inhibition of Cell Surface and Soluble TNF-α Production by Acute Ethanol Exposure

    Get PDF
    Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-α secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-κB reporter mice, activation of NF-κB in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000±35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120±16880, p = 0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-α is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-α gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-α release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-α secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-α cell surface expression and secretion. For example, 4.69±0.60% of untreated cells were positive for cell surface TNF-α, LPS increased this to 25.18±0.85%, which was inhibited by ethanol (86.8 mM) to 14.29±0.39% and increased by a TACE inhibitor to 57.88±0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-α but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-α gene expression seems to be the major mechanism of ethanol action in this system

    The relation between socioeconomic and demographic factors and tumour stage in women diagnosed with breast cancer in Denmark, 1983–1999

    Get PDF
    The authors investigated the association between socioeconomic position and stage of breast cancer at the time of diagnosis in a nationwide Danish study. All 28 765 women with a primary invasive breast cancer diagnosed between 1983 and 1999 were identified in a nationwide clinical database and information on socioeconomic variables was obtained from Statistics Denmark. The risk of being diagnosed with a high-risk breast cancer, that is size >20 mm, lymph-node positive, ductal histology/high histologic grade and hormone receptor negative, was analysed by multivariate logistic regression. The adjusted odds ratio (OR) for high-risk breast cancer was reduced with longer education with a 12% reduced risk (95% confidence interval (CI), 0.80,0.96) in women with higher education and increased with reduced disposable income (low income group: OR, 1.22; 95% CI, 1.10,1.34). There was an urban–rural gradient, with higher risk among rural women (OR 1.10; 95 % CI, 1.02, 1.18) and lower risk among women in the capital suburbs (OR, 0.85; 95% CI, 0.78, 0.93) and capital area (OR, 0.93; 95% CI, 0.84–1.02). These factors were significant only for postmenopausal women, although similar patterns were observed among the premenopausal women, suggesting a subgroup of aggressive premenopausal breast cancers less influenced by socioeconomic factors

    Nanostructural Diversity of Synapses in the Mammalian Spinal Cord

    Get PDF
    This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe

    Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients

    Get PDF
    The abilities of chemokines in orchestrating cellular migration are utilised by different (patho-)biological networks including malignancies. However, except for CXCR4/CXCL12, little is known about the relation between tumour-related chemokine expression and the development and progression of solid tumours like breast cancer. In this study, microarray analyses revealed the overexpression of chemokine CXCL13 in breast cancer specimens. This finding was confirmed by real-time polymerase chain reaction in a larger set of samples (n=34) and cell lines, and was validated on the protein level performing Western blot, ELISA, and immunohistochemistry. Levels of CXCR5, the receptor for CXCL13, were low in malignant and healthy breast tissues, and surface expression was not detected in vitro. However, we observed a strong (P=0.0004) correlation between the expressions of CXCL13 and CXCR5 in breast cancer tissues, indicating a biologically relevant role of CXCR5 in vivo. Finally, we detected significantly elevated serum concentrations of CXCL13 in patients with metastatic disease (n=54) as compared with controls (n=44) and disease-free patients (n=48). In conclusion, CXCL13 is overexpressed within breast cancer tissues, and increased serum levels of this cytokine can be found in breast cancer patients with metastatic disease pointing to a role of CXCL13 in the progression of breast cancer, suggesting that CXCL13 might serve as a useful therapeutic target and/or diagnostic marker in this malignancy
    corecore