291 research outputs found
Multiplicative random walk Metropolis-Hastings on the real line
In this article we propose multiplication based random walk Metropolis
Hastings (MH) algorithm on the real line. We call it the random dive MH (RDMH)
algorithm. This algorithm, even if simple to apply, was not studied earlier in
Markov chain Monte Carlo literature. The associated kernel is shown to have
standard properties like irreducibility, aperiodicity and Harris recurrence
under some mild assumptions. These ensure basic convergence (ergodicity) of the
kernel. Further the kernel is shown to be geometric ergodic for a large class
of target densities on . This class even contains realistic target
densities for which random walk or Langevin MH are not geometrically ergodic.
Three simulation studies are given to demonstrate the mixing property and
superiority of RDMH to standard MH algorithms on real line. A share-price
return data is also analyzed and the results are compared with those available
in the literature
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface
Formation of Complex and Unstable Chromosomal Translocations in Yeast
Genome instability, associated with chromosome breakage syndromes and most human
cancers, is still poorly understood. In the yeast Saccharomyces
cerevisiae, numerous genes with roles in the preservation of genome
integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that
lack Sgs1, a RecQ-like DNA helicase related to the human
Bloom's-syndrome-associated helicase BLM, show an increased rate of
genome instability, and we have previously shown that they accumulate recurring
chromosomal translocations between three similar genes, CAN1,
LYP1 and ALP1. Here, the chromosomal
location, copy number and sequence similarity of the translocation targets
ALP1 and LYP1 were altered to gain insight
into the formation of complex translocations. Among 844 clones with chromosomal
rearrangements, 93 with various types of simple and complex translocations
involving CAN1, LYP1 and ALP1
were identified. Breakpoint sequencing and mapping showed that the formation of
complex translocation types is strictly dependent on the location of the
initiating DNA break and revealed that complex translocations arise via a
combination of interchromosomal translocation and template-switching, as well as
from unstable dicentric intermediates. Template-switching occurred between
sequences on the same chromosome, but was inhibited if the genes were
transferred to different chromosomes. Unstable dicentric translocations
continuously gave rise to clones with multiple translocations in various
combinations, reminiscent of intratumor heterogeneity in human cancers. Base
substitutions and evidence of DNA slippage near rearrangement breakpoints
revealed that translocation formation can be accompanied by point mutations, and
their presence in different translocation types within the same clone provides
evidence that some of the different translocation types are derived from each
other rather than being formed de novo. These findings provide
insight into eukaryotic genome instability, especially the formation of
translocations and the sources of intraclonal heterogeneity, both of which are
often associated with human cancers
Monitoring neural activity with bioluminescence during natural behavior
Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. We used bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish with the Ca^(2+)-sensitive photoprotein green fluorescent protein (GFP)-Aequorin in most neurons generated large and fast bioluminescent signals that were related to neural activity, neuroluminescence, which could be recorded continuously for many days. To test the limits of this technique, we specifically targeted GFP-Aequorin to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior
Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis
Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2
Shared Agency with Parents for Educational Goals: Ethnic Differences and Implications for College Adjustment
This study proposed and confirmed three ways in which college students can perceive shared agency and two ways in which they can perceive non-shared agency with parents when pursuing educational goals in college. Differences and similarities were examined among participants from four ethnic backgrounds (N = 515; 67% female): East Asian American, Southeast Asian American, Filipino/Pacific Islander American, and European American. Results indicated that Asian American youth reported higher levels of non-shared agency with parents (i.e., parental directing and noninvolvement), lower levels of shared agency (i.e., parental accommodation, support, or collaboration), and poorer college adjustment compared to European Americans. However, ethnic similarities were found whereby perceived shared agency in education with parents was associated with college adjustment. Multiple mediation analyses also indicated that our model of shared and non-shared agency with parents explained differences in college adjustment between Asian and European Americans, though more strongly for comparisons between European and East Asian Americans. Our results suggest that parents continue to be important in the education of older youth but that continued directing of youth’s education in college can be maladaptive
Both male and female identity influence variation in male signalling effort
<p>Abstract</p> <p>Background</p> <p>Male sexual displays play an important role in sexual selection by affecting reproductive success. However, for such displays to be useful for female mate choice, courtship should vary more among than within individual males. In this regard, a potentially important source of within male variation is adjustment of male courtship effort in response to female traits. Accordingly, we set out to dissect sources of variation in male courtship effort in a fish, the desert goby (<it>Chlamydogobius eremius</it>). We did so by designing an experiment that allowed simultaneous estimation of within and between male variation in courtship, while also assessing the importance of the males and females as sources of courtship variation.</p> <p>Results</p> <p>Although males adjusted their courtship depending on the identity of the female (a potentially important source of within-male variation), among-male differences were considerably greater. In addition, male courtship effort towards a pair of females was highly repeatable over a short time frame.</p> <p>Conclusion</p> <p>Despite the plasticity in male courtship effort, courtship displays had the potential to reliably convey information about the male to mate-searching females. Our experiment therefore underscores the importance of addressing the different sources contributing to variation in the expression of sexually-selected traits.</p
The case for home based telehealth in pediatric palliative care: a systematic review
Background: Over the last decade technology has rapidly changed the ability to provide home telehealth services. At the same time, pediatric palliative care has developed as a small, but distinct speciality. Understanding the experiences of providing home telehealth services in pediatric palliative care is therefore important
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
- …