160 research outputs found

    Modelling the Genetic Risk in Age-Related Macular Degeneration

    Get PDF
    Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS) for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69โ€“2.05) than patients aged 75 and above (1.45, 95% CI: 1.36โ€“1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11โ€“1131.96) for individuals in the highest category (GRS 3.44โ€“5.18, 0.5% of the general population) compared to subjects with the most common genetic background (GRS โˆ’0.05โ€“1.70, 40.2% of general population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available

    Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection

    Get PDF
    peer-reviewedBackground A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. Results We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. Conclusions We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.This research was funded by the European Unionโ€™s Horizon 2020 Research and Innovation Program under the Marie Skล‚odowska-Curie grant agreement No. 641984, through funding of the List_MAPS consortium. We also acknowledge funding and support from Science Foundation Ireland (SFI) in the form of a center grant (APC Microbiome Ireland grant SFI/12/RC/2273)

    Systemic Complement Activation in Age-Related Macular Degeneration

    Get PDF
    Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (nโ€Š=โ€Š112) and controls (nโ€Š=โ€Š67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes

    Incorporation of a Dietary Omega 3 Fatty Acid Impairs Murine Macrophage Responses to Mycobacterium tuberculosis

    Get PDF
    by creating an immunosuppressive environment. We hypothesized that incorporation of n-3 PUFA suppresses activation of macrophage antimycobacterial responses and favors bacterial growth, in part, by modulating the IFNฮณ-mediated signaling pathway.. The fatty acid composition of macrophage membranes was modified significantly by DHA treatment. DHA-treated macrophages were less effective in controlling intracellular mycobacteria and showed impaired oxidative metabolism and reduced phagolysosome maturation. Incorporation of DHA resulted in defective macrophage activation, as characterized by reduced production of pro-inflammatory cytokines (TNFฮฑ, IL-6 and MCP-1), and lower expression of co-stimulatory molecules (CD40 and CD86). DHA treatment impaired STAT1 phosphorylation and colocalization of the IFNฮณ receptor with lipid rafts, without affecting surface expression of IFNฮณ receptor. in response to activation by IFNฮณ, by modulation of IFNฮณ receptor signaling and function, suggesting that n-3 PUFA-enriched diets may have a detrimental effect on host immunity to tuberculosis

    A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration

    Get PDF
    Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (Nโ€Š=โ€Š293) and AMD cases (White Nโ€Š=โ€Š4210 Indianโ€Š=โ€Š134; Malayโ€Š=โ€Š140) and controls (White Nโ€Š=โ€Š3229; Indianโ€Š=โ€Š117; Malayโ€Š=โ€Š2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CIโ€Š=โ€Š[2.51, 3.01]; pโ€Š=โ€Š8.31ร—10โˆ’109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (pโ€Š=โ€Š3.52ร—10โˆ’9) and by 15.57-fold (Pโ€Š=โ€Š0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ฮ”CNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number

    Genetic Variations Strongly Influence Phenotypic Outcome in the Mouse Retina

    Get PDF
    Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2-nb1 at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases
    • โ€ฆ
    corecore