2,329 research outputs found

    Decision support for personalized cloud service selection through multi-attribute trustworthiness evaluation

    Get PDF
    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. © 2014 Ding et al

    Polarization-Rotated Waveguide Antennas for Base-Station Applications

    Full text link
    © 2017 IEEE. A novel base-station antenna element is proposed. It consists of an artificial surface composed of parallel strips rotating in the polarization direction and a segment of a rectangular waveguide. The surface is designed on a single-sided substrate, which has the same area as the aperture of the waveguide. To achieve the polarization rotation, the parallel strips on the surface are rotated by 45° with respect to the orientation of the waveguide antenna. By adding the surface, the linear polarization direction of the rectangular waveguide antenna rotates by 45° to comply with the requirements of the cellular industry. To verify the simulation results, the proposed antenna was fabricated and measured. Results show that the antenna has an operating bandwidth from 698-960 MHz, where a stable radiation pattern is achieved

    Inhibitory Effect of Berberine on Zeste Homolog 2 (Ezh2) Enhancement in Human Esophageal Cell Lines

    Get PDF
    Purpose: To investigate the inhibitory effect of berberine treatment on enhancement of zeste of homolog 2 (Ezh2) expressions in KYSE450 human esophageal cancer cells.Methods: Transwell motility chambers were used to analyze cell migration and invasion. Bio-Rad protein assay was used for the determination of protein concentration. Chemiluminescence with ECL system was employed for the detection of protein bands as per the manufacturer’s protocol. Staining was carried out with Alexa-Fluor 647 mouse anti-BrdU antibody. Flow cytometry was performed after adding DAPI. Annexin-V/DAPI staining and flow cytometry were used for the quantification of apoptotic cell death. Total RNA was isolated from KYSE450 cells using an RNA isolation kit.Results: Berberine-induced inhibition of Ezh2 expression led to inhibition of cell proliferation by G1 phase cell cycle arrest and induced anti-invasive properties of KYSE450 cells in Boyden chamber assays. There was 92 % reduction in invasive tendency of KYSE450 cells following treatment with berberine. Histone  methylation inhibitor, 3-deazaneoplanocin A (DZNep), also led to a similar effect on cell proliferation of KYSE450 cells. Berberine treatment also resulted in strong transcriptional reduction of the AXL receptor kinase. The results of qRT-PCR and FACS analyses showed significant inhibition of AXL mRNA and protein expression in KYSE450 carcinoma cells after treatment with berberine.Conclusion: Berberine may be an effective therapeutic agent in the treatment of esophageal carcinoma.Keywords: Berberine, Histone methylation inhibitor, Anti-invasive, Cell proliferation, Human Esophageal cance

    Plasma concentrations of coffee polyphenols and plasma biomarkers of diabetes risk in healthy Japanese women

    Get PDF
    Coffee consumption has been reported to reduce the risk of type 2 diabetes in experimental and epidemiological studies. This anti-diabetic effect of coffee may be attributed to its high content in polyphenols especially caffeic acid and chlorogenic acid. However, the association between plasma coffee polyphenols and diabetic risks has never been investigated in the literature. In this study, fasting plasma samples were collected from 57 generally healthy females aged 38-73 (mean 52, s.d. 8) years recruited in Himeji, Japan. The concentrations of plasma coffee polyphenols were determined by liquid chromatography coupled with mass tandem spectrometer. Diabetes biomarkers in the plasma/serum samples were analysed by a commercial diagnostic laboratory. Statistical associations were assessed using Spearman's correlation coefficients. The results showed that plasma chlorogenic acid exhibited negative associations with fasting blood glucose, glycated hemoglobin and C-reactive protein, whereas plasma total coffee polyphenol and plasma caffeic acid were weakly associated with these biomarkers. Our preliminary data support previous findings that coffee polyphenols have anti-diabetic effects but further replications with large samples of both genders are recommended

    Ozone production and hydrocarbon reactivity in Hong Kong, Southern China

    Get PDF
    Author name used in this publication: Wang, T.Author name used in this publication: Ding, A.2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Inhibition of tyrosine kinase receptors by SU6668 promotes abnormal stromal development at the periphery of carcinomas

    Get PDF
    Dynamic contrast-enhanced (albumin-Gd-DTPA) magnetic resonance imaging, performed during 2 weeks of daily administration of an inhibitor of tyrosine kinase receptors (SU6668) in an HT-29 colon carcinoma model, revealed the onset of a hyper-enhancing rim, not observed in untreated tumours. To account for tissue heterogeneity in the quantitative analysis, we segmented tumours into three subunits automatically identified by cluster analysis of the enhancement curves using a k-means algorithm. Transendothelial permeability (Kps) and fractional plasma volume (fPV) were calculated in each subunit. An avascular and necrotic region, an intermediate zone and a well-vascularised periphery were reliably identified. During untreated tumour growth, the identified sub-regions did not substantially change their enhancement pattern. Treatment with SU6668 induced major changes at tumour periphery where a significant increase of Kps and fPV was observed with respect to control tumours. Histology revealed a sub-capsular layer composed of hyper-dense viable tumour cells in the periphery of untreated tumours. The rim of viable neoplastic cells was reduced in treated tumours, and replaced by loose connective tissue characterised by numerous vessels, which explains the observed hyper-enhancement. The present data show a peripheral abnormal development of cancer-associated stroma, indicative of an adaptive response to anti-angiogenic treatment

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Forced, not voluntary, exercise effectively induces neuroprotection in stroke

    Get PDF
    Previous treadmill exercise studies showing neuroprotective effects have raised questions as to whether exercise or the stress related to it may be key etiologic factors. In this study, we examined different exercise regimens (forced and voluntary exercise) and compared them with the effect of stress-only on stroke protection. Adult male Sprague-Dawley rats (n = 65) were randomly assigned to treatment groups for 3 weeks. These groups included control, treadmill exercise, voluntary running wheel exercise, restraint, and electric shock. Levels of the stress hormone, corticosterone, were measured in the different groups using ELISA. Animals from each group were then subjected to stroke induced by a 2-h middle cerebral artery (MCA) occlusion followed by 48-h reperfusion. Infarct volume was determined in each group, while changes in gene expression of stress-induced heat shock proteins (Hsp) 27 and 70 were compared using real-time PCR between voluntary and treadmill exercise groups. The level of corticosterone was significantly higher in both stress (P < 0.05) and treadmill exercise (P < 0.05) groups, but not in the voluntary exercise group. Infarct volume was significantly reduced (P < 0.01) following stroke in rats exercised on a treadmill. However, the amelioration of damage was not duplicated in voluntary exercise, even though running distance in the voluntary exercise group was significantly (P < 0.01) longer than that of the forced exercise group (4,828 vs. 900 m). Furthermore, rats in the electric shock group displayed a significantly increased (P < 0.01) infarct volume. Expression of both Hsp 27 and Hsp 70 mRNA was significantly increased (P < 0.01) in the treadmill exercise group as compared with that in the voluntary exercise group. These results suggest that exercise with a stressful component, rather than either voluntary exercise or stress alone, is better able to reduce infarct volume. This exercise-induced neuroprotection may be attributable to up-regulation of stress-induced heat shock proteins 27 and 70

    Self-adjustment mechanisms and their application for orthosis design

    Get PDF
    Medical orthoses aim at guiding anatomical joints along their natural trajectories while preventing pathological movements, especially in case of trauma or injuries. The motions that take place between bone surfaces have complex kinematics. These so-called arthrokinematic motions exhibit axes that move both in translation and rotation. Traditionally, orthoses are carefully adjusted and positioned such that their kinematics approximate the arthrokinematic movements as closely as possible in order to protect the joint. Adjustment procedures are typically long and tedious. We suggest in this paper another approach. We propose mechanisms having intrinsic self-aligning properties. They are designed such that their main axis self-adjusts with respect to the joint’s physiological axis during motion. When connected to a limb, their movement becomes homokinetic and they have the property of automatically minimizing internal stresses. The study is performed here in the planar case focusing on the most important component of the arthrokinematic motions of a knee joint

    Muscle-specific overexpression of AdipoR1 or AdipoR2 gives rise to common and discrete local effects whilst AdipoR2 promotes additional systemic effects

    Get PDF
    Hypoadiponectinemia and adiponectin resistance are implicated in the aetiology of obesity-related cardiometabolic disorders, hence represent a potential therapeutic axis. Here we characterised the effects of in vivo electrotransfer-mediated overexpression of the adiponectin receptors, AdipoR1 or AdipoR2, into tibialis anterior muscle (TAM) of lean or obese mice. In lean mice, TAM-specific overexpression of AdipoR1 (TAMR1) or AdipoR2 (TAMR2) increased phosphorylation of AMPK, AKT and ERK and expression of the insulin responsive glucose transporter glut4. In contrast, only TAMR2 increased pparα and a target gene acox1. These effects were decreased in obese mice despite no reduction in circulating adiponectin levels. TAMR2 also increased expression of adipoQ in TAM of lean and obese mice. Furthermore, in obese mice TAMR2 promoted systemic effects including; decreased weight gain; reduced epididymal fat mass and inflammation; increased epididymal adipoQ expression; increased circulating adiponectin. Collectively, these results demonstrate that AdipoR1 and AdipoR2 exhibit overlapping and distinct effects in skeletal muscle consistent with enhanced adiponectin sensitivity but these appear insufficient to ameliorate established obesity-induced adiponectin resistance. We also identify systemic effects upon TAMR2 in obese mice and postulate these are mediated by altered myokine production. Further studies are warranted to investigate this possibility which may reveal novel therapeutic approaches
    corecore