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Abstract

Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation
techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as
they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming
process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models
cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service
selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly
taken into account. By simply collecting limited historical records, the current approach is able to support the personalized
trustworthy service selection. The experimental results also show that our approach performs much better than other
competing ones with respect to the customer preference and expectation in trustworthiness assessment.
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Introduction

Cloud computing has become the driver for innovation in the

recent years, from startups (e.g. Dropbox, Instagram) to

established enterprises (Samsung). They are all using cloud

computing to better serve their customers around the world [1].

Cloud service is also gaining wide acceptance and becoming

popular to individuals as it reduces hardware and licensing costs,

and it is scalable and allows users to work from any computer

anywhere.

Several leading IT enterprises including Google, IBM, Micro-

soft, and Amazon have started to offer cloud services to their

customers [2–4]. While many small and medium-sized enterprises

(SMEs) and individual customers prefer to apply cloud services to

build their business system or personal applications, they are often

facing two major challenges at the selection time: (1) multiple

cloud services are often available by different venders providing

similar functional properties (i.e., ‘‘functionally-equivalent’’). Cus-

tomers usually lack appropriate, qualified, sufficient information

and benchmarks to assess cloud services with regard to individual

preferences and market dynamics [5]; (2) although cloud service

vendors are struggling to improve service quality and perfor-

mance, cloud computing are not necessarily trustworthy –

unhandled exceptions and crashes may cause cloud service to

deviate dramatically from the expectation [6,7]. Therefore, there

is an increasing demand to help the non-expert customers with the

selection of trustworthy cloud service.

The trustworthiness of cloud service affects customers’ percep-

tion towards service quality, which has significant bearing on

customer satisfaction and royalty. The trustworthy attributes

include reliability, scalability, availability, safety, security, etc [8–

10]. Designing a general and comprehensive analytical model for

trustworthiness evaluation is challenging, as the model needs the

assessor to achieve, in reasonable time, useful results to determine

the best service option. Due to their commercial value (similar to

online recommendation system), several evaluation models [11–

14] have been proposed by academia and industry lately. These

models focus on quantitative analysis and evaluate trustworthiness

through a collectively exhaustive dataset.

Except for some specific cases, the assessment dataset remains

very sparse due to the costly and time-consuming nature of cloud

service invocation. Intuitively, without sufficient data, fair review

of cloud services cannot be achieved by existing evaluation

methods [9,15]. Fortunately, cloud vendors can collect historical

records (QoS values, customer ratings, etc) from different cloud

applications in cloud computing environment. With the vast

amount of collaborative filtering (CF) technologies available in the

field of online recommendation system, we believe there is a strong
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theoretical foundation to derive a generic trustworthiness model to

support the evaluation of cloud service.

There have been some attempts to improve the accuracy of

cloud service assessment by a CF process. However, very little

attention is paid to the trustworthiness of cloud service, and no

interest is given to the case when significant attribute values are

missing. The lack of general and formal methodology can be

attributed to the large process gap between the cloud service

recommenders and trustworthiness researchers. To deal with this

challenge, we propose a new CF approach to make use of hidden

information (i.e. experience usability, value distribution) to

measure the similarity between different services. Moreover, to

support personalized selection of cloud services, we also provide a

natural treatment for multi-attribute aggregation taking into

account customer’s preference and expectation.

Background

In the current market, multiple cloud services of similar

functions are often available for specific domains. For example,

in cloud storage service (e.g. data service, online file system, online

backup plan), over 100 functionally-equivalent cloud services are

offered by vendors. Some typical examples can be found in

Table 1. Given the lack of cloud computing experience of non-

expert customers, it is tedious to manually select an appropriate

candidate from a set of functionally-equivalent services. Therefore,

cloud service evaluation through quality analysis has gained much

attraction among service-oriented computing and cloud comput-

ing communities over the past two decades.

Given the intricate interactions among QoS (Quality of Service)

attributes, customer preferences and market dynamics that jointly

influence the perceived quality of cloud services, developing a

market-relevant analytical model is crucial to cloud service

selection [16–18]. Due to their commercial value and the

associated research challenges, many researchers and practitioners

have studied the topics. Two types of service selection models are

widely examined: evaluation-focused service selection models and

prediction-focused service selection models.

By achieving market-relevant evaluations, customers can

identify risks and benefits of each cloud service application and

choose the best for adoption. The most employed evaluation

models include: AHP-based cloud service ranking [19], reputa-

tion-aware service rating [20], trust-aware service selection [21],

brokerage-based selection [22], SLA-based cloud trustworthiness

estimation [11], trustworthy service selection [23]. Although these

techniques can accurately and exhaustively estimate service

quality, their implementation is time-consuming and costly.

Instead of real-world cloud service invocations, the prediction-

focused service selection models can produce QoS values or

service ranking using collaborative filtering (CF). The CF

approaches for cloud service selection can be categorized as:

item-based approaches [24], customer-based approaches [25],

their fusion approaches [26], model-based approaches [27], and

ranking-oriented approaches [28], where the first three categories

are rating-oriented approaches. These approaches help assessors

predict the missing attribute values by exploiting neighbors’ usage

experiences. Several collaborative filtering approaches for cloud

service selection have been studied, but they did not consider

customer preference and expectation in trustworthiness assess-

ment.

In the prediction process, similar neighbors (customers or

services) are identified to generate useful collaborative informa-

tion. Popular choices for similarity estimation include Pearson

correlation coefficient (PCC) [29] and vector similarity (VS) [30].

Since these measures only consider the numerical relationship

between different ratings, they remain imprecise and confusing for

estimating the neighbor similarity to support missing value

Table 1. Online cloud storage services.

Vender Cloud Service Feature Pricing

Amazon EBS Storage Service $0.1 per GB-month, $0.1 per 1 million I/O requests

Amazon S3 Standard Storage Service $0.095 per GB-month, $0.005 per 1000 requests

Google Google Cloud Storage Storage Service $0.085 per GB-month, $0.01 per 1000 ops-month

IBM SoftLayer Object Storage Storage Service $0.1 per GB-month

Microsoft Azure Data Service Storage Service $0.095 per GB-month, $0.01 per 100000 I/O requests

Apple iCloud Storage Service $20 for 10 GB upgrade

GoGrid GoGrid Cloud Storage Storage Service $0.12 per GB-month

JustCloud JustCloud Cloud Storage Storage Service $3.95 per month, unlimited storage

ZipCloud ZipCloud Online Storage Storage Service $6.95 per month, unlimited storage

AT&T Synaptic Storage Storage Service Unknown

LiveDrive Livedrive Backup Plan Backup System $6 per month, 2 TB storage space

CrashPlan CrashPlan Backup Plan Backup System $5.99 per month, unlimited storage

Carbonite Cloud Backup Services Backup System $59.99 per year, unlimited storage

FlexiScale FlexiScale Public Cloud Platform Service $17 per 1000 unit-hour

AppNexus AppNexus Cloud Platform Service Unknown

Rackspace Mosso cloud files File System $0.75 per GB-month

HighTail HighTail File System $15.99 per month, unlimited storage

Amazon SimpleDB Database $0.12 per GB-month

doi:10.1371/journal.pone.0097762.t001
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prediction. Concerned that PCC may overestimate the similarities

of negative services, Zheng et al. [26] propose a significance weight

and modify PCC to improve the accuracy of similarity compu-

tation in service recommendation. However, the significance

weight affects the similarity computation of positive services with

more usage experiences. To address this problem, Ding et al. [31]

define a convex function (usage structure factor) to reflect the

usability of customer experience.

While a great number of researchers have focused on the trust-

aware service selection and recommendation, little attention has

been devoted to the role of customer preference and expectation in

multi-attribute trustworthiness evaluation [32]. In addition, large

quantities of works offer some valuable clues to discern between

different services, the significances arising from value distribution

is seldom considered. Thus, we will here combine evaluation-

focused and prediction-focused approaches to propose a novel

trustworthiness evaluation method which will fully utilize the

information of similar services and customer’s experience, and

take into account both the missing attribute value prediction and

the multi-attribute trustworthiness evaluation at the same time.

Methods and Materials

Based on the fact that the size and rate of growth in customers

outweigh the expansion of delivered services in the cloud

computing market, we employ item-based CF approach rather

than the user-based or their fusion approach to produce the

missing attribute values in trustworthiness evaluation. Motivated

by the observation that experience usability and value distribution

could provide valuable insight and distinctive information in the

CF process, we create a new similarity measure for enhancing the

prediction performance.

Pearson Correlation Coefficient
To make an accurate prediction, we first estimate the similarity

between different cloud services. Given a service selection problem

consisting of M customers and N services, the customer-service

matrix for missing value prediction is denoted as

q1,1 � � � q1,N

..

.
P

..

.

qM,1 � � � qM,N

2
664

3
775 ð1Þ

where the entry qm,n denotes a historical record (QoS value or

customer rating) of cloud service csn made by customer um,

‘‘qm,n = null’’ states that um didn’t invoke csn yet.

Pearson Correlation Coefficient (PCC). [29] Taking use of

numerical distance to estimate the correlation between different

services, PCC has been successfully adopted for recommendation

system evaluations. Let csn and csv be two services, Un,y be the

subset of customers who have invoked both csn and csv, then PCC is

applied to calculate the similarity between csn and csv by

Sim csn,csy

� �
~X

m[Un,y
(qm,n{�qqn)(qm,y{�qqy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m[Un,y
(qm,n{�qqn)2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m[Un,y

(qm,y{�qqy)2

r ð2Þ

where Sim(csn, csv) is in the interval of [21, 1], �qqn and �qqy stand for

the average values of csn and csv made by different customers.

However, as noted in Ref. [26], PCC always overestimate the

similarities of negative services, which are actually not similar but

happen to have similar usage experience made by few customers.

Table 2 shows a simple customer-service matrix which contains six

customers (u1 to u6) and ten cloud services (cs1 to cs10). When

utilizing Eq. (2), we calculate the PCC values between the services,

and get the following relation: Sim(cs1, cs3).Sim(cs1, cs4).Sim(cs1,

cs2), which indicates cs3 is more similar to cs1 than cs2 and cs4. It is

clearly contrary to the reality due to the limited usage experience.

Therefore, it is necessary to reinforce the similarity information in

the CF process.

Significance estimation
It seems logical to believe that some cloud services in customer-

service matrix may have high significances in making recommen-

dations [33,34]. For instance, a cloud service, which has more

useful historical records, may be regarded as more important

compared with a negative service. PCC is only related to the

numerical distance between different services, but it has nothing to

do with the statistical features of historical records. For this case,

we introduce two types of significances arising from the experience

usability and value distribution of historical records, respectively.

Estimating the experience usability. To determine the

significance of neighbors in a CF process, one often assumes a

linear relationship between usage experiences and neighbor

significances [26,31]. One difference of our work from traditional

CF approaches is that we apply a distance measurement method

to estimate the experience usability in customer-service matrix.

During the distance measurement, Jaccard’s coefficient [35] is

frequently employed to estimate the discrimination of asymmetric

information on binary variables. Before integrating Jaccard’s

coefficient into our similarity measure, we map the original

customer-service matrix into a rectangular binary matrix as

follows:

q1,1 � � � q1,N

..

.
P

..

.

qM,1 � � � qM,N

2
664

3
775 IF (qm,n~null)THEN(bm,n~0)

ELSE(bm,n~1)

b1,1 � � � b1,N

..

.
P

..

.

bM,1 � � � bM,N

2
664

3
775ð3Þ

where the entry bm,n = 1 denotes the customer um has invoked the

service csn previously, whereas bm,n = 0 denotes that um didn’t

invoke csn. Let |Un| be the number of customers who has invoked

csn before, and |Un,y| be the number of customers who invoked

both csn and csv. We use the Jaccard’s coefficient Jn,y to reflect the

rise of significance due to the experience usability, which can be

expressed mathematically as:

Jn,y~
DUn,yD

DUnDzDUyD{DUn,yD
~

XM
m~1

bm,n ^ bm,y

� �
XM
m~1

bm,n _ bm,y

� � , ð4Þ

where Jn,y is in the interval of [0, 1], and a larger Jn,y value indicates

that the historical records made over csv is more useful in the CF

process. Jn,y = Jy,n holds for all services, which is consistent with the

intuition that the similarity between csv and csn is only related to the

subset of historical records made by the customers who have

invoked both csn and csv.

Based on the customer-service matrix in Table 2, we get the

significances arising from the experience usability for each service,

as shown in Table 3. The values shown in grey are calculated for

the negative service cs3. As observed from Table 2, cs3 has only

been invoked twice. Consequently, his experience usability values

Decision Support for PCSS through MA Trustworthiness Evaluation
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are significantly lower than other services (e.g. J1,3,,J1,2). We can

infer that integrating Jn,y into similarity measure will notably

reduce the influence of negative service. It is worth noting that

neither PCC nor Jn,y can distinguish between cs2 and cs4, since they

do not have sufficient power to detect the crucial difference in

value distributions.

Estimating the value distribution. The neighbors which

have the same PCC similarity may have different value

distributions. It is necessary to detect more hidden information

in the customer-service matrix for significance estimation. For this

case, we propose a method to discriminate neighbors’ significances

arising from their unique value distributions. In practice, the

customer-service matrix is very sparse due to limited usage

experiences. Therefore, we will ignore the historical records made

by the customer u, where u 6[ Un,y. Let Dn = {qm,n | um [ Un,y} and

Dy = {qm,y | um [ Un,y} be the historical records in similarity

computation made over csn and csv, and |Dy| be the cardinality of

Dn, and dom(Dn) be the domain of Dn subject to the following

constraints:

dom(Dn)?½q{
n ,qz

n �*
q{

n ~MIN qm,nDum[Un,y

� �
,

qz
n ~MAX qm,nDum[Un,y

� �
:

(
ð5Þ

Following dom(Dn), the dataset Dy can be grouped into three

categories:

D[n
y ~ qm,yDum[Un,y,qm,y[({?,q{

n )
� �

,

D~n
y ~ qm,yDum[Un,y,qm,y[½q{

n ,qz
n �

� �
,

D]n
y ~ qm,yDum[Un,y,qm,y[(qz

n ,z?)
� �

:

8>><
>>: ð6Þ

Since Dy is a finite discrete dataset, the probability of each category

can be computed as:

p1
y~

DD[n
y D

DDyD
, p2

y~
DD~n

y D
DDyD

, p3
y~

DD]n
y D

DDyD

� �
, ð7Þ

where
X3

k~1
pk

y

	 

~1, and DD[n

y DzDD~n
y DzDD]n

y D~DDyD. From

the information entropy aspect, we use the following expression to

detect the difference between the value distributions of csn and csy:

VDn,y~1{
Hn,y

Hmax
, ð8Þ

where Hn,y~
X

pk
y=0

{pk
y log2(pk

y)
	 


denotes the information

entropy of Dy, and Hmax denotes the maximal entropy in customer-

service matrix, respectively. VDn,y is a linear function defined in [0,

1]. From the maximum entropy principle [36], we have

Hmax = log2(3). Thus, Eq.(8) can be rewritten as

VDn,y~1{

X
pk
y=0

{pk
y log2(pk

y)
	 

log2(3)

, ð9Þ

where VDn,y attains its unique global minimum VDMIN
n,y ~0 if

p1
y~p2

y~p3
y~1=3; otherwise it attains global maximum

VDMAX
n,y ~1 when Apk

y~1.

We can thus calculate the significances VDn,y arising from the

value distribution using Eq.(9) over the customer-service matrix in

Table 2. A simple customer-service matrix.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

u1 0.9 0.7 null 1 0.8 0.6 0.4 0.7 null null

u2 0.8 0.7 0.8 0.4 0.6 0.6 0.7 null 0.9 0.8

u3 0.9 0.8 null 0.6 0.5 0.5 0.5 null null 1

u4 0.8 0.9 null 1 null 0.8 0.6 0.7 0.6 null

u5 0.7 0.6 null 0.5 0.7 null 0.8 null 0.4 0.9

u6 null 0.8 0.9 0.6 null null 0.9 0.8 0.8 0.7

doi:10.1371/journal.pone.0097762.t002

Table 3. Significances arising from the experience usability.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9

cs2 0.833

cs3 0.167 0.333

cs4 0.833 1 0.333

cs5 0.8 0.667 0.2 0.667

cs6 0.8 0.667 0.2 0.667 0.6

cs7 0.833 1 0.333 1 0.667 0.667

cs8 0.333 0.5 0.25 0.5 0.167 0.4 0.5

cs9 0.5 0.667 0.5 0.667 0.333 0.333 0.667 0.4

cs10 0.5 0.667 0.5 0.667 0.6 0.333 0.667 0.167 0.6

doi:10.1371/journal.pone.0097762.t003
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Table 2. Table 4 shows the values of these significances. The

values shown in grey are calculated for the cloud services cs2 and

cs4.

Similarity measurement adopting significance. After we

have defined the two types of significance for each service, we can

then create the similarity measure, Sims(csn, csv), which takes into

account the significance previously defined. To estimate the

significance as accurately as possible, we identify the significance of

csv with respect to csn as a linear combination of Jn,y and VDn,y, such

that:

SIGn,y~a|Jn,yz(1{a)|VDn,y, ð10Þ

where a is defined to determine how much our significance relies

on experience usability and value distribution. If a = 0, we only

extract the experience usability for conducting significance

estimation, and if a = 1, we consider only the value distribution.

Hence, the similarity measure can be written in standard form:

Sims(csn,csy)~SIGn,y|Sim(csn,csy) ð11Þ

where SIGn,y denotes the significance of csv with respect to csn, and

Sim(csn, csv) denotes the PCC value between csn and csv. Different

from existing similarity measures, our approach employs not only

numerical distance but also usage experience as well as value

distribution to determine the similarity between different services.

With the definition of similarity measure defined in Eq.(11), for

every cloud service in customer-service matrix, we rank their

neighbors and select the top-k most similar services to make

missing value prediction. Following the top-k similar service

defined in [26], we get

CSk
n~fcsyDcsy[CSn, SimS(csn,csy)w0,y=ng, ð12Þ

where CSn denotes the neighbor set of csn in customer-service

matrix, and SimS(csn, csv) denotes the similarity between csn and csv.

For the customer-service matrix in Table 2, we set a to 0.8 to

obtain the similarity measures between different services (see

Table 5). The top 3 neighbors of each service are marked in grey

areas as seen in each column.

Missing value prediction. With the exponential growth of

cloud service on the Internet, service recommendation techniques

like QoS-aware CF approaches have become increasingly

important and popular [37]. Based on our similarity measure,

we propose an enhanced item-based CF approach (named as JV-

PCC) to reinforce the prediction performance. To predict the

missing value q̂qm,n of service csn for customer um, we first determine

the objective weight of each similar neighbor:

Table 4. Significances arising from the value distribution.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

cs1 1 1 1 0.488 0.369 0.387 1 1 0.421

cs2 0.545 0.685 1 1 0.488 1 0.421 1 0.488

cs3 1 0.369 1 1 1 1 1 1 0.369

cs4 0.387 0 1 0.054 0.054 0.079 0.421 0.488 1

cs5 0.369 0.488 1 1 0.421 1 1 1 1

cs6 0.488 0.488 1 1 1 0.488 1 1 1

cs7 0.387 0.421 0.369 1 0.488 0.488 1 1 0.369

cs8 1 1 1 1 1 1 1 1 1

cs9 0.421 0.488 1 1 1 0.369 0.421 0.369 0.421

cs10 0.421 0.421 1 1 1 1 1 1 0.685

doi:10.1371/journal.pone.0097762.t004

Table 5. Similarities between different services.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

cs1 0.361 0.334 0.366 20.099 20.421 20.663 20.24 0.402 0.141

cs2 0.323 0.403 0.484 20.379 0.376 20.153 0 0.213 20.081

cs3 0.334 0.34 0.223 0.36 0.36 0.259 0.4 20.165 20.212

cs4 0.314 0.387 0.223 0.336 0.303 20.494 20.347 20.166 0.046

cs5 20.096 20.326 0.36 0.453 0.324 20.099 20.334 20.464 20.432

cs6 20.435 0.376 0.36 0.408 0.39 0.145 20.312 20.208 20.405

cs7 20.663 20.135 0.189 20.605 20.085 0.146 0.549 0.032 20.451

cs8 20.24 0 0.4 20.43 20.334 20.312 0.549 0.518 20.334

cs9 0.324 0.184 20.165 20.193 20.464 20.152 0.027 0.393 20.395

cs10 0.14 20.079 20.268 0.04 20.432 20.405 20.544 20.334 20.432

doi:10.1371/journal.pone.0097762.t005
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vn,y~
SimS(csn,csy)X

qm,y=null
SimS(csn,csy)

, ð13Þ

where csv [CSk
n denotes a similar neighbor of csn, while SimS(csn, csv)

denotes the similarity between csn and csv. The objective weights

define the relative importance of each similar neighbor in the CF

process. Next, we attain a prediction by a classic aggregation

function:

q̂qm,n~
X

qm,y=null

qm,y|vn,y

� �
, ð14Þ

where qm,y denotes the historical record of csy made by customer um.

In practice, local runtime environment (e.g. network bandwidth)

and customer’s rating style may significantly influence the

historical records over delivered services. However, the above

function deems inappropriate as it is calculated through only one

customer. To address this problem, JV-PCC predicts the missing

attribute value by the following equation:

q̂qm,n~qz
n z qz

n {q{
n

� � X
csy[CSk

n ,

qm,y=null

vn,y|
qm,y{q{

y

qz
y {q{

y

 !
, ð15Þ

where vn,y denotes the objective weight of csy with respect to csn,

while q{
y and qz

y denote the minimum and maximum values of

service csy, respectively. Table 6 displays the values estimated for

the missing records in Table 2. In the experimental examples, both

customer-based and service-based neighborhood information were

adopted for approximating the missing value.

Trustworthiness-aware service selection
Several models, focusing on the quantitative measurement of

service trustworthiness, have been proposed in Refs. [9,18,38].

However, different customers have different preference and

expectation in service selection. A thorough understanding into

these factors is essential to ensure effective evaluation finding.

Here, we introduce a cloud service evaluation model, which helps

aggregate trustworthy attributes by considering customer’s prefer-

ence and expectation.

Attribute utility determination. To make use of observed

or estimated values, we need to know that different attributes may

have inconsistent dimensions. The results in [32] show that utility

can be used to identify an entity’s trustworthiness. Therefore, we

first derive the utility from the customer-service matrix so as to

ensure their values are in the range of [0, 1]. Trustworthy

attributes are often divided into quantitative and qualitative

attributes, of which the former are objective measures (e.g. QoS

value), and the latter are subjective customer ratings. In addition,

quantitative trustworthy attributes can be grouped into two classes:

‘‘benefit’’ and ‘‘cost’’. For ‘‘benefit’’ (‘‘cost’’) attribute, e.g.

throughput (response-time), the higher (lower) its value is, the greater

the possibility that a customer would choose it becomes. In our

model, qualitative attributes are also considered as ‘‘benefit’’

attributes. Let qm,n be the attribute value of csn, and the attribute

utility (risk-neutral) Hm,n has the following form:

Hm,n~

qm,n{q{
m

qz
m {q{

m

, qm,n[00benefit00,

qz
m {qm,n

qz
m {q{

m

, qm,n[00cost00,

8>><
>>: ð16Þ

where q{
m and qz

m denote the minimum and maximum attribute

values for customer um, and they are subject to the following

constraints:

q{
m ~MIN qm,nDn~1,:::,Nð Þ,

qz
m ~MAX qm,nDn~1,:::,Nð Þ:

�
ð17Þ

The attribute utility Hm,n is in the range of [0, 1], where a larger

Hm,n indicates that customer um is more satisfied with the service

csn.

Customer satisfaction estimation. From influential theory

in marketing science, we consider that the perception of cloud

service trustworthiness is a customer satisfaction function, which

includes customer preference and expectation attributes. In

general, customer satisfaction function should exhibit two charac-

teristics: (1) given the same expectation, a trustworthy cloud service

is weighed much more heavily than an untrustworthy service. This

effect is reflected in the derivation of attribute utility; (2) customer

satisfaction slightly increases when attribute utility surpasses a

certain value (expectation), and significantly decreases when

attribute utility falls below expectation [39]. We formalize this

interaction as a piecewise linear function:

Cm,n~
Hm,n, Hm,n§Hexp,

Hm,n(Hm,n{Hexpz1)d, Hm,nƒHexp,

�
ð18Þ

where Cm,n is constrained to 0#Cm,n#1; the parameter d regulates

the impact of customer preference on perceived trustworthiness;

and Hexp denotes the customer expectation with regard to selecting

trustworthy cloud service. As shown in Fig. 1, Cm,n is continuous

(i.e. the piecewise function converges at Hm,n = Hexp).

Table 6. Predicted attribute values.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

u1 0.843 0.609 1

u2 0.808

u3 0.865 0.74 0.842

u4 0.85 0.8 0.887

u5 0.831 0.593 0.76

u6 0.865 0.703 0.749

doi:10.1371/journal.pone.0097762.t006
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The severity and rate of satisfaction (controlled by Hexp and d,

respectively) reflect different customer’s tolerance to untrustworthy

candidates. Let Hexp = 0.7, and d = 2. Table 7 shows the customer

satisfaction for each attribute value (historical record or predicted

value), which corresponds to the original customer-service matrix

in Table 2 and the predicted missing values given in Table 6.

Trustworthy attribute aggregation. After estimating cus-

tomer satisfaction and ensuring the value of Cm,n in the interval of

[0, 1], the degree of trustworthiness (alias ‘‘trust value’’ [40]) of

each cloud service in customer-service matrix can be achieved by

aggregating trustworthy attributes. Let C1
m,n::C

J
m,n be the customer

satisfaction on a set of specified attributes A1..AJ, then the trust

value of csn is computed as:

trustn~

XJ

j~1
vj|Cj

m,n

J
, ð19Þ

where vj denotes the weight of trustworthy attribute Aj,XJ

j~1
vj~1.

The trust value gives the comprehensive perception of cloud

service trustworthiness, while the weights modify this trust value

based on the relative importance of trustworthy attributes.

Actually, a set of specified trustworthy attributes can be easily

weighted by applying existing technologies such as those discussed

in [32]. We omit the details for brevity.
Decision support for personalized service

selection. Multi-attribute trustworthiness evaluation is an im-

portant step for making accurate service selection. We suppose

that um is the active customer, who requires trustworthy cloud

service. While the evaluation results have arrived, a set of

appropriate service candidates can be identified for um by:

CSm~fcsnDtrustnwem, n~1,:::,Ng, ð20Þ

where trustn denotes the trust value of csn, em denotes the selection

threshold determined by um. We aim to remedy the shortcomings

of evaluation-focused selection methods by avoiding the costly and

time-consuming real-world service invocations. Note that when

CSm~1 the service selection for the active customer um needs to

be degrade by decreasing the parameter em.

Let e1~:::~e6~0:85, a set of trustworthy cloud services can be

recommended for u1…u6 as

CS1~fcs1,cs4,cs5g, CS2~fcs8,cs9g, CS3~fcs1,cs9,cs10g,
CS4~fcs2,cs4,cs5,cs6g, CS5~fcs7g, CS6~fcs7,cs8g,

ð21Þ

where the customer satisfaction for each attribute value is

presented in Table 7. In practice, our approach makes it possible

to deal with various types of trustworthiness-aware cloud service

selections by combing the evaluation-focused and the prediction-

focused methods. Note that if trustworthiness is not the only issue

that affects customer’s decision making, it is necessary to extend

the selection process of our approach, e.g., price-oriented service

filtering, into other attributes or indexes.

Results

In this section, abundance of experiments are conducted to

show how to recommend trustworthy cloud service in the context

Figure 1. Customer satisfaction function Cm,n. (a) and (b) depict
the distributions of customer satisfaction as recorded at the fixed
expectation Hexp = 0.7 and Hexp = 0.9, where the parameter d is varied
from 2 to 6 in increment of 2. It can be observed that the rate of change
in customer satisfaction differs significantly when Hm,n falls below and
exceeds the expectation.
doi:10.1371/journal.pone.0097762.g001

Table 7. Customer satisfaction.

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

u1 1 0.134 0.229 1 1 0.134 0 0 0.215 1

u2 0.32 0.134 0 0 0.134 0.134 0.486 1 1 0.134

u3 1 0.623 0.587 0.134 0 0 0.05 0.166 0.884 1

u4 0.32 1 0.32 1 1 1 0.196 0 0.196 0.531

u5 0 0 0.115 0.036 0.623 0.115 0.8 0.407 0 0.623

u6 0.825 0.623 1 0.134 0.645 0.83 1 0.926 0.8 0

doi:10.1371/journal.pone.0097762.t007
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of large sparse assessment dataset, and to verify the efficiency of

our CF approach.

Prototype implementation and results
To demonstrate the effectiveness of the proposed service

selection approach, we use Microsoft C# .NET to develop a

prototype system. Based on literature [8,41,42], we find Availability

and Performance are two commonly used trustworthy attributes. We

utilize them to conduct trustworthiness-aware service selection, by

including two types of historical records: response-time and throughput.

Their evaluation styles and weights are summarized as Table 8.

We employ an open QoS research dataset [43] to simulate the

historical records of Performance and Availability in cloud service

market. The QoS values for response-time and throughput were

collected from 339 users over 5825 web services in a real-world

environment. Since it is impractical to discover and distinguish all

functionally-equivalent services at the selection time, we randomly

select 100 services’ QoS records, and construct two 3396100

customer-service matrices for our experiment. Figure 2 shows the

value distribution of response-time and throughput in user-service matrix.

We cannot simply utilize these QoS records to analyze and rank

the cloud services since these customer-service matrices are sparse

assessment datasets, and cannot accurately interpret the trustwor-

thiness status of all services. Suppose u339 is the active customer.

The historical records made by u339 contains 9 and 7 missing

values (on response-time and throughput, respectively) which will

potentially affect his cloud service selection decision. Therefore,

the proposed CF approach is employed to predict the missing

attribute values. At this simulation experiment, the similarity

parameter a is set to 0.8 and remains so until the trust values for

u339 are reported. Once the prototype system obtains the customer

satisfactions by utilizing Eqs.(12)–(14), where the parameter d = 2

and the expectation Hexp = 0.7, the active customer will receive the

trust values of each service. We vary the selection parameter e339

from 0 to 1 in increment of 0.1, and count the cloud services whose

trust values surpass e339 (the number of recommended services for

u339, i.e. |CS339|). The experiment results are shown in Figure 3.

Although we only study two trustworthy attributes in the

Figure 2. QoS value distributions. (a) and (b) depict the value
distributions of response-time and throughput in our customer-service
matrices, where ‘‘21’’ indicates that the service invocation failed due to
an http error. The ranges of response-time and throughput are 0–16.053
seconds and 0–541.546 kbps, respectively.
doi:10.1371/journal.pone.0097762.g002

Figure 3. The number of recommended services for u339. Results
are presented for the proposed cloud service selection approach, where
the parameter e339 is varied from 0 to 1 in increment of 0.1.
doi:10.1371/journal.pone.0097762.g003

Figure 4. Impact of preference and expectation. (a) and (b) depict
the experimental results of preference parameter d and expectation
Hexp, respectively. They indicates that d regulates the elimination rate of
untrustworthy cloud services, whereas Hexp controls the degree of
customer’s tolerance to untrustworthy service.
doi:10.1371/journal.pone.0097762.g004
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experiment, the proposed approach can be easily extended to

other trustworthiness-aware service selection problems. When

selecting the optimal trustworthy services from a set of function-

ally-equivalent candidates, the entry data of our approach are the

corresponding historical records (i.e., QoS values or customer

ratings), the active customer’s preference and expectation towards

service trustworthiness, and the selection parameter.

Impact of d and Texp

Different customers have different preference and expectation

in trustworthy service selections. Instead of risk-neutral attribute

utility, we use the customer satisfaction Cm,n to identify the

perceived trustworthiness of delivered services. To evaluate the

impact of customer’s preference and expectation, we have conduct

additional experiments with variable parameters d and Hexp. In

these experiments, we first vary d from 2 to 6 in increment of 2,

where the expectation Hexp is fixed at 0.7 first. Later, we set d to 2,

and vary Hexp from 0.7 to 0.9 in increment of 0.1. Figure 4 (a)

shows the experimental results of preference parameter d and

Figure 4 (b) shows the experimental results of expectation Hexp.

The parameters d and Hexp jointly determine how to derive the

customer satisfaction from attribute utility to approximate the

active customer’s attitude towards profit and risk.

Performance comparison of CF approaches
In this work, we present an enhanced item-based CF approach

(i.e., JV-PCC) to predict the missing attribute values for cloud

service selection. Our approach engages the significances ( Jn,y and

VDn,y) to improve the accuracy of similarity estimation. To study

the prediction performance, we compare JV-PCC with two

existing item-based approaches: Item-based CF adopting PCC

(IPCC) [44], and Extended PCC approach (f-PCC) [31].

Evaluation metric. We use Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) to evaluate the prediction

Table 8. Trustworthy attributes of cloud service.

Attribute Aj Evaluation style Weight q{
339 qz

339

Availability A1 ‘‘cost’’ QoS value 0.65 0 16.053

Performance A2 ‘‘benefit’’ QoS value 0.35 0 541.546

doi:10.1371/journal.pone.0097762.t008

Figure 5. Impact of neighborhood size k. (a) and (b) depict the MAE fractions of JV-PCC, f-PCC and IPCC for response-time and throughput, while
(c) and (d) depict the RMSE fractions. It can be observed that JV-PCC achieves smaller MAE and RMSE consistently than f-PCC for both response-time
and throughput. Regardless of JV-PCC or f-PCC, as k increases, MAE and RMSE drop at first, indicating that better performance can be achieved by
employing more similar services’ records to generate the predictions. However, when k surpasses a specific level (i.e. k = 25), they fail to drop with a
further increase in k, which were caused by the limited number of similar neighbors.
doi:10.1371/journal.pone.0097762.g005
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performance of our approach in comparison with other approach-

es. MAE and RMSE are defined as:

MAE~

X
m,n

Dq̂qm,n{qm,nD
Q

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m,n

(q̂qm,n{qm,n)2

Q

s
8>>>><
>>>>:

,
ð22Þ

where q̂qm,n and qm,n are the predicted QoS value and the actual

value, respectively.
Experimental setup and results. The size of top-k similar

service set plays an important role in CF approach, which

determines how many neighbors’ historical records are employed

to generate predictions. To study the impact of neighborhood size

k, we separate the customer-service matrices into two parts:

training set (80% historical records in the matrix) and test set (the

remaining 20% records). We set the density to 50%, the

significance parameter a to 0.7, and vary k from 5 to 30 in

increment of 5. Figure 5 shows the experimental results for response-

time and throughput. Under the same simulation condition, JV-PCC

and f-PCC significantly outperform IPCC. The observations also

suggest that better accuracy can be achieved by our model when

more historical records are available in the service selection study.

Conclusions

Trustworthiness-aware service selection is a critical issue among

cloud computing and service-oriented architecture communities.

In this paper, we propose a personalized service selection

approach which takes into account the missing value prediction

and the multi-attribute evaluation requirements. We find that the

proposed approach can tackle various types of trustworthiness-

aware selection problems in cloud service market. Meanwhile, the

experimental results demonstrate that the proposed CF approach

significantly improves the prediction performance as compared

with other competing item-based approaches.

Employing untrustworthy cloud service will expose users to

high-risk IT structure, resulting in a host of intra-organizational

hazards that detriment the organization and disrupt the normal

operations [45]. In the present work, we can only look into the

static approach for trustworthy service selection, and we will

investigate more types of trustworthiness evaluation models (e.g.

probability model, dynamic model, etc) in the future since different

cloud service applications may have different selection criteria and

data structures.
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