51 research outputs found

    Responses of aerial insectivorous bats to local and landscape-level features of coffee agroforestry systems in Western Ghats, India

    Get PDF
    Shade coffee has shown great promise in providing crucial habitats for biodiversity outside formal protected areas. Insectivorous bats have been understudied in coffee, although they may provide pest control services. We investigated the influence of local and landscape-level features of coffee farms on aerial insectivorous bats in Chikmagalur district in the Western Ghats biodiversity hotspot, India. Bats were monitored in 20 farm sites using ultrasound detectors, and the response of bat species richness and activity to changes in tree density, proportion of built-up area in the neighborhood, and distance of farm from forest areas quantified. We examined if models built to explain the species richness and activity could also predict them in nine additional sites. We detected nine phonic types/species in the study area. The quantified predictors had no effect on assemblage-level species richness and activity of bats. Responses of edge-space and cluttered-space forager guilds mirrored those of the overall assemblage, but some species vulnerable to forest conversion like Rhinolophus beddomei were detected rarely. Best models explained up to 20% and 15% variation in assemblage-level species richness and activity respectively, and were poor predictors of both response variables. We conclude that coffee farms in our study area offer an important commuting space for insectivorous bats across a gradient of shade management. Further research should include species-specific responses to management decisions for at-risk species and quantification of ecosystem services like natural pest control to inform biodiversity conservation initiatives in the Western Ghats coffee landscapes

    Tigers Need Cover: Multi-Scale Occupancy Study of the Big Cat in Sumatran Forest and Plantation Landscapes

    Get PDF
    The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    • 

    corecore