969 research outputs found

    Vitamin D and subsequent all-age and premature mortality: a systematic review

    Get PDF
    <br>Background: All-cause mortality in the population < 65 years is 30% higher in Glasgow than in equally deprived Liverpool and Manchester. We investigated a hypothesis that low vitamin D in this population may be associated with premature mortality via a systematic review and meta-analysis.</br> <br>Methods: Medline, EMBASE, Web of Science, the Cochrane Library and grey literature sources were searched until February 2012 for relevant studies. Summary statistics were combined in an age-stratified meta-analysis.</br> <br>Results: Nine studies were included in the meta-analysis, representing 24,297 participants, 5,324 of whom died during follow-up. The pooled hazard ratio for low compared to high vitamin D demonstrated a significant inverse association (HR 1.19, 95% CI 1.12-1.27) between vitamin D levels and all-cause mortality after adjustment for available confounders. In an age-stratified meta-analysis, the hazard ratio for older participants was 1.25 (95% CI 1.14-1.36) and for younger participants 1.12 (95% CI 1.01-1.24).</br> <br>Conclusions: Low vitamin D status is inversely associated with all-cause mortality but the risk is higher amongst older individuals and the relationship is prone to residual confounding. Further studies investigating the association between vitamin D deficiency and all-cause mortality in younger adults with adjustment for all important confounders (or using randomised trials of supplementation) are required to clarify this relationship.</br&gt

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response

    Get PDF
    Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4g/kg or 0.8g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a “Go-stimulus” when it was followed by a “Stop-stimulus”. In the control variant (VSST_C), participants responded to the “Go-stimulus” even if it was followed by a “Stop-stimulus”. Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour

    Surprised at All the Entropy: Hippocampal, Caudate and Midbrain Contributions to Learning from Prediction Errors

    Get PDF
    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts

    Socio-economic and ethnic disparities in childhood cancer survival, Yorkshire, UK

    Get PDF
    Background Establishing the existence of health inequalities remains a high research and policy agenda item in the United Kingdom. We describe ethnic and socio-economic differences in paediatric cancer survival, focusing specifically on the extent to which disparities have changed over a 20-year period. Methods Cancer registration data for 2674 children (0–14 years) in Yorkshire were analysed. Five-year survival estimates by ethnic group (south Asian/non-south Asian) and Townsend deprivation fifths (I–V) were compared over time (1997–2016) for leukaemia, lymphoma, central nervous system (CNS) and other solid tumours. Hazard ratios (HR: 95% CI) from adjusted Cox models quantified the joint effect of ethnicity and deprivation on mortality risk over time, framed through causal interpretation of the deprivation coefficient. Results Increasing deprivation was associated with significantly higher risk of death for children with leukaemia (1.11 (1.03–1.20)) and all cancers between 1997 and 2001. While we observed a trend towards reducing differences in survival over time in this group, a contrasting trend was observed for CNS tumours whereby sizeable variation in outcome remained for cases diagnosed until 2012. South Asian children with lymphoma had a 15% reduced chance of surviving at least 5 years compared to non-south Asian, across the study period. Discussion Even in the United Kingdom, with a universally accessible healthcare system, socio-economic and ethnic disparities in childhood cancer survival exist. Findings should inform where resources should be directed to provide all children with an equitable survival outcome following a cancer diagnosis
    corecore