498 research outputs found
Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation
A comprehensive study on the atmospheric neutrino flux in the energy region
from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov
detector is presented in this paper. The energy and azimuthal spectra of the
atmospheric and fluxes
are measured. The energy spectra are obtained using an iterative unfolding
method by combining various event topologies with differing energy responses.
The azimuthal spectra depending on energy and zenith angle, and their
modulation by geomagnetic effects, are also studied. A predicted east-west
asymmetry is observed in both the and samples at 8.0
{\sigma} and 6.0 {\sigma} significance, respectively, and an indication that
the asymmetry dipole angle changes depending on the zenith angle was seen at
the 2.2 {\sigma} level. The measured energy and azimuthal spectra are
consistent with the current flux models within the estimated systematic
uncertainties. A study of the long-term correlation between the atmospheric
neutrino flux and the solar magnetic activity cycle is also performed, and a
weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK
I-IV data spanning a 20 year period. For particularly strong solar activity
periods known as Forbush decreases, no theoretical prediction is available, but
a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma}
level.Comment: 30 pages, 31 figure
Solar Neutrino Measurements in Super-Kamiokande-IV
Upgraded electronics, improved water system dynamics, better calibration and
analysis techniques allowed Super-Kamiokande-IV to clearly observe very
low-energy 8B solar neutrino interactions, with recoil electron kinetic
energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September
of 2008; this paper includes data until February 2014, a total livetime of 1664
days. The measured solar neutrino flux is (2.308+-0.020(stat.) +
0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed
recoil electron energy spectrum is consistent with no distortions due to
neutrino oscillations. An extended maximum likelihood fit to the amplitude of
the expected solar zenith angle variation of the neutrino-electron elastic
scattering rate in SK-IV results in a day/night asymmetry of
(-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the
solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data
(SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 =
0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 =
4.8+1.5-0.8 x10-5 eV2.Comment: Submitted to Physical Review D; 23 pages, 40 figure
Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively
Phosphorus Dynamics and Bioavailability in Andosols : Estimation of Potential Bioavailable P Transport in Agricultural Runoff of Andosols
In this study, we estimated the potential bioavailable P transport in agricultural runoff of Andosols from the relations between P sorption saturation and anion exchange resin and Mehlich-3 extractable P, with special references to the difference in active Al composition. the P sorption saturation of 10%, that is optimum P level needed for good crop yields, is critical point of inorganic P for the potential bioavailable P loss in surface runoff from agricultural Andosols with different active Al composition. However, silandic A and B soils showed lower values of Mehlich-3 P than aluandic soils when they had the same P sorption saturation. Mehlich-3 P underestimated the bioavailability of soil P in the silandic soils compared to the aluandic soils. We recommend the use of different critical values of Mehlich-3 P for assessing the upper critical limits for P in aluandic and silandic Andosols
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Search for dinucleon decay into pions at Super-Kamiokande
A search for dinucleon decay into pions with the Super-Kamiokande detector
has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is
a process that violates baryon number by two units. We present the first search
for dinucleon decay to pions in a large water Cherenkov detector. The modes
O C, O
N, and O
O are investigated. No significant excess in the
Super-Kamiokande data has been found, so a lower limit on the lifetime of the
process per oxygen nucleus is determined. These limits are:
years,
years, and
years. The lower
limits on each mode are about two orders of magnitude better than previous
limits from searches for dinucleon decay in iron.Comment: 20 pages, 17 figures. Accepted for publication in Physical Review D
on March 30, 201
- …
