1,928 research outputs found

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Posthumous Medical Data Donation: The Case for a Legal Framework

    Get PDF
    This article explores the options for establishing a legal framework for posthumous medical data donation (PMDD). This concept has not been discussed in legal scholarship to date at all. The paper is, therefore, a first legal study of PMDD, aiming to address the gap and shed light on the most significant legal issues that could affect this concept. The paper starts by looking at the protection of the deceased’s health records and medical data, finding that this protection in law is more extensive than the general protection of the deceased’s personal data, or the protection of post-mortem privacy as a concept. The paper then investigates key issues around ownership and succession of personal data, including medical and health-related data, and how these could affect PMDD and its legal framework. The author then goes on to explore some parallels with organ donation to determine whether there are some lessons to be learned from this comparable regulatory framework. The paper concludes with the discussion around the need for a Code for posthumous medical data donation developed by the Digital Ethics Lab at the Oxford Internet Institute, and a more formal regime that would enable and facilitate this practice. Here, the author proposes key law reforms in the area of data protection and governance related to PMDD. These reforms would include amendments to the general data protection ideally, to ensure harmonisation and consistency across the EU, as well as between the general and sector-specific data protection laws and policies. These changes would contribute to legal and regulatory clarity and would help implement this important and valuable practice, which aims to facilitate research and advances in medical treatments and care

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    Host-Pathogen O-Methyltransferase Similarity and Its Specific Presence in Highly Virulent Strains of Francisella tularensis Suggests Molecular Mimicry

    Get PDF
    Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships

    Testing for the Dual-Route Cascade Reading Model in the Brain: An fMRI Effective Connectivity Account of an Efficient Reading Style

    Get PDF
    Neuropsychological data about the forms of acquired reading impairment provide a strong basis for the theoretical framework of the dual-route cascade (DRC) model which is predictive of reading performance. However, lesions are often extensive and heterogeneous, thus making it difficult to establish precise functional anatomical correlates. Here, we provide a connective neural account in the aim of accommodating the main principles of the DRC framework and to make predictions on reading skill. We located prominent reading areas using fMRI and applied structural equation modeling to pinpoint distinct neural pathways. Functionality of regions together with neural network dissociations between words and pseudowords corroborate the existing neuroanatomical view on the DRC and provide a novel outlook on the sub-regions involved. In a similar vein, congruent (or incongruent) reliance of pathways, that is reliance on the word (or pseudoword) pathway during word reading and on the pseudoword (or word) pathway during pseudoword reading predicted good (or poor) reading performance as assessed by out-of-magnet reading tests. Finally, inter-individual analysis unraveled an efficient reading style mirroring pathway reliance as a function of the fingerprint of the stimulus to be read, suggesting an optimal pattern of cerebral information trafficking which leads to high reading performance

    Diagnosis and management of allergy and respiratory disorders in sport: An EAACI task force position paper

    Get PDF
    Allergy and respiratory disorders are common in young athletic individuals. In the context of elite sport, it is essential to secure an accurate diagnosis in order to optimize health and performance. It is also important, however, to consider the potential impact or consequences of these disorders, in recreationally active individuals engaging in structured exercise and/or physical activity to maintain health and well-being across the lifespan. This EAACI Task Force was therefore established, to develop an up-to-date, research-informed position paper, detailing the optimal approach to the diagnosis and management of common exercise-related allergic and respiratory conditions. The recommendations are informed by a multidisciplinary panel of experts including allergists, pulmonologists, physiologists and sports physicians. The report is structured as a concise, practically focussed document, incorporating diagnostic and treatment algorithms, to provide a source of reference to aid clinical decision-making. Throughout, we signpost relevant learning resources to consolidate knowledge and understanding and conclude by highlighting future research priorities and unmet needs
    • …
    corecore