5 research outputs found

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    Future exoplanet research: XUV (EUV and X-ray) detection and characterization

    Get PDF
    This chapter gives an overview of the current status of XUV research in exoplanets and highlights the prospects of future observations. Fundamental questions about the formation and the physical and chemical evolution of exoplanets, particularly hot Jupiters, are addressed through the different lines of XUV research: these comprise XUV irradiation of planetary atmospheres by the host stars, and consequent mass loss and atmospheric evaporation; X-ray and UV transits in exoplanet systems; and Star-Planet Interactions, most often determined by magnetic and tidal forces. While no other UV instrumentation as powerful as that carried by the Hubble Space Telescope will be available for detailed studies in the foreseeable future, the discovery potential of future revolutionary X-ray observatories, such as ATHENA and Lynx, will provide accurate atmosphere characterization and will make strides towards establishing the physics of the interactions between exoplanets and their host stars

    Special cases : moons, rings, comets, trojans

    Full text link
    Non-planetary bodies provide valuable insight into our current under- standing of planetary formation and evolution. Although these objects are challeng- ing to detect and characterize, the potential information to be drawn from them has motivated various searches through a number of techniques. Here, we briefly review the current status in the search of moons, rings, comets, and trojans in exoplanet systems and suggest what future discoveries may occur in the near future.Comment: Invited review (status August 2017

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    Exoplanetary Biosignatures for Astrobiology

    No full text
    Since life evolved on our planet there have been subtle interplays between biology and Earth System Components (atmosphere-lithosphere-ocean-interior). Life, for example, can impact weathering rates which, in turn, influence climate stabilizing feedback cycles on Earth. Photosynthesis is ultimately responsible for our oxygen-rich atmosphere, which favours the formation of the protective ozone layer. The recent rise of exoplanetary science has led to a re-examination of such feedbacks and their main drivers under different planetary conditions. In this work we present a brief overview of potential biosignatures (indicators of life) and review knowledge of the main processes, which influence them in an exoplanetary context. Biosignature methods can be broadly split into two areas, namely “in-situ” and “remote”. Criteria employed to detect biosignatures are diverse and include fossil morphology, isotope ratios, patterns in the chemical constituents of cells, degree of chirality, shifts from thermal or redox equilibrium, and changes in the abundance of atmospheric species. For the purposes of this review, our main focus lies upon gas-phase species present in Earth-like atmospheres, which could be detected remotely by spectroscopy. We summarize current knowledge based on the modern (and early) Earth and the Solar System then review atmospheric model studies for Earth-like planets, which predict climate, photochemistry and potential spectral signals of biosignature species
    corecore