191 research outputs found

    Modelling fine scale route choice of upstream migrating fish as they approach an instream structure

    Get PDF
    This study used pattern-oriented modelling (POM) to investigate the space use and behavioural response of upstream migrating European river lamprey (Lampetra fluviatilis) to the two-dimensional hydrodynamic conditions created by an instream structure (triangular profile gauging weir). Passive Integrated Transponder (PIT) and acoustic telemetry were used to map the spatial-temporal distribution patterns of lamprey as they migrated upstream. Acoustic Doppler velocimetry and computer modelling were used to quantify the hydrodynamic environment. In adherence with the POM methodology, multiple movement models, incorporating increasingly complex environmental feedback mechanisms and behavioural rules were created and systematically assessed to identify which factors might reproduce the observed patterns. The best model was a spatially explicit Eulerian-Lagrangian Individual Based Model (IBM) that included two simple behaviours: 1) tortuous non-directed swimming when in low flow velocity (< 0.1 m s−1) and 2) persistent directed (against the flow) swimming in moderate to high flow velocity (≄ 0.1 m s−1). The POM indicated that flow heterogeneity was an important influence of lamprey space use and that simple behavioural rules (i.e. two separate movement behaviours in response to flow velocity) were sufficient to reproduce the main movement pattern observed: avoidance of flow recirculating regions near the banks. The combination of field telemetry, hydrodynamic modelling and POM provided a useful framework for systematically identifying the key factors (hydrodynamic and behavioural) that governed the space use of the target species and would likely work well for investigating similar relationships in other aquatic species

    Is the Black-widow Pulsar PSR J1555-2908 in a Hierarchical Triple System?

    Get PDF
    The 559 Hz black-widow pulsar PSR J1555-2908, originally discovered in radio, is also a bright gamma-ray pulsar. Timing its pulsations using 12 yr of Fermi-Large Area Telescope gamma-ray data reveals long-term variations in its spin frequency that are much larger than is observed from other millisecond pulsars. While this variability in the pulsar rotation rate could be intrinsic "timing noise,"here we consider an alternative explanation: the variations arise from the presence of a very-low-mass third object in a wide multiyear orbit around the neutron star and its low-mass companion. With current data, this hierarchical-triple-system model describes the pulsar's rotation slightly more accurately than the best-fitting timing noise model. Future observations will show if this alternative explanation is correct. © 2022. The Author(s). Published by the American Astronomical Society

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques

    The influence of quintessence on the motion of a binary system in cosmology

    Get PDF
    We employ the metric of Schwarzschild space surrounded by quintessential matter to study the trajectories of test masses on the motion of a binary system. The results, which are obtained through the gradually approximate approach, can be used to search for dark energy via the difference of the azimuth angle of the pericenter. The classification of the motion is discussed.Comment: 7 pages, 1 figur

    A rotating three component perfect fluid source and its junction with empty space-time

    Get PDF
    The Kerr solution for empty space-time is presented in an ellipsoidally symmetric coordinate system and it is used to produce generalised ellipsoidal metrics appropriate for the generation of rotating interior solutions of Einstein's equations. It is shown that these solutions are the familiar static perfect fluid cases commonly derived in curvature coordinates but now endowed with rotation. The resulting solutions are also discussed in the context of T-solutions of Einstein's equations and the vacuum T-solution outside a rotating source is presented. The interior source for these solutions is shown not to be a perfect fluid but rather an anisotropic three component perfect fluid for which the energy momentum tensor is derived. The Schwarzschild interior solution is given as an example of the approach.Comment: 14 page

    A 350-MHz GBT Survey of 50 Faint Fermi Gamma-ray Sources for Radio Millisecond Pulsars

    Full text link
    We have used the Green Bank Telescope at 350MHz to search 50 faint, unidentified Fermi Gamma-ray sources for radio pulsations. So far, these searches have resulted in the discovery of 10 millisecond pulsars, which are plausible counterparts to these unidentified Fermi sources. Here we briefly describe this survey and the characteristics of the newly discovered MSPs.Comment: 4 pages, 2 figures, to appear in AIP Conference Proceedings of Pulsar Conference 2010 "Radio Pulsars: a key to unlock the secrets of the Universe", Sardinia, October 201

    Introducing CASCADEPOP: an open-source sociodemographic simulation platform for US health policy appraisal

    Get PDF
    Largescale individual-level and agent-based models are gaining importance in health policy appraisal and evaluation. Such models require the accurate depiction of the jurisdiction’s population over extended time periods to enable modeling of the development of non-communicable diseases under consideration of historical, sociodemographic developments. We developed CASCADEPOP to provide a readily available sociodemographic micro-synthesis and microsimulation platform for US populations. The micro-synthesis method used iterative proportional fitting to integrate data from the US Census, the American Community Survey, the Panel Study of Income Dynamics, Multiple Cause of Death Files, and several national surveys to produce a synthetic population aged 12 to 80 years on 01/01/1980 for five states (California, Minnesota, New York, Tennessee, and Texas) and the US. Characteristics include individuals’ age, sex, race/ethnicity, marital/employment/parental status, education, income and patterns of alcohol use as an exemplar health behavior. The microsimulation simulates individuals’ sociodemographic life trajectories over 35 years to 31/12/2015 accounting for population developments including births, deaths, and migration. Results comparing the 1980 micro-synthesis against observed data shows a successful depiction of state and US population characteristics and of drinking. Comparing the microsimulation over 30 years with Census data also showed the successful simulation of sociodemographic developments. The CASCADEPOP platform enables modelling of health behaviors across individuals’ life courses and at a population level. As it contains a large number of relevant sociodemographic characteristics it can be further developed by researchers to build US agent-based models and microsimulations to examine health behaviors, interventions, and policies

    Discovery of a gamma-ray black widow pulsar by GPU-accelerated Einstein@Home

    Get PDF
    We report the discovery of 1.97 ms period gamma-ray pulsations from the 75 minute orbital-period binary pulsar now named PSR J1653−0158. The associated Fermi Large Area Telescope gamma-ray source 4FGL J1653.6−0158 has long been expected to harbor a binary millisecond pulsar. Despite the pulsar-like gamma-ray spectrum and candidate optical/X-ray associations—whose periodic brightness modulations suggested an orbit—no radio pulsations had been found in many searches. The pulsar was discovered by directly searching the gamma-ray data using the GPU-accelerated Einstein@Home distributed volunteer computing system. The multidimensional parameter space was bounded by positional and orbital constraints obtained from the optical counterpart. More sensitive analyses of archival and new radio data using knowledge of the pulsar timing solution yield very stringent upper limits on radio emission. Any radio emission is thus either exceptionally weak, or eclipsed for a large fraction of the time. The pulsar has one of the three lowest inferred surface magnetic-field strengths of any known pulsar with B surf ≈ 4 × 107 G. The resulting mass function, combined with models of the companion star's optical light curve and spectra, suggests a pulsar mass gsim2 M ⊙. The companion is lightweight with mass ~0.01 M ⊙, and the orbital period is the shortest known for any rotation-powered binary pulsar. This discovery demonstrates the Fermi Large Area Telescope's potential to discover extreme pulsars that would otherwise remain undetected
    • 

    corecore