374 research outputs found
Control of substrate access to the active site in methane monooxygenase
Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Recommended from our members
Fewer rainy days and more extreme rainfall by the end of the century in Southern Africa
Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
Methanobactin and the Link Between Copper and Bacterial Methane Oxidation
Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs
Recommended from our members
Attribution: how is it relevant for loss and damage policy and practice?
Attribution has become a recurring issue in discussions about Loss and Damage (L&D). In this highly-politicised context, attribution is often associated with responsibility and blame; and linked to debates about liability and compensation. The aim of attribution science, however, is not to establish responsibility, but to further scientific understanding of causal links between elements of the Earth System and society. This research into causality could inform the management of climate-related risks through improved understanding of drivers of relevant hazards, or, more widely, vulnerability and exposure; with potential benefits regardless of political positions on L&D. Experience shows that it is nevertheless difficult to have open discussions about the science in the policy sphere. This is not only a missed opportunity, but also problematic in that it could inhibit understanding of scientific results and uncertainties, potentially leading to policy planning which does not have sufficient scientific evidence to support it. In this chapter, we first explore this dilemma for science-policy dialogue, summarising several years of research into stakeholder perspectives of attribution in the context of L&D. We then aim to provide clarity about the scientific research available, through an overview of research which might contribute evidence about the causal connections between anthropogenic climate change and losses and damages, including climate science, but also other fields which examine other drivers of hazard, exposure, and vulnerability. Finally, we explore potential applications of attribution research, suggesting that an integrated and nuanced approach has potential to inform planning to avert, minimise and address losses and damages. The key messages are
In the political context of climate negotiations, questions about whether losses and damages can be attributed to anthropogenic climate change are often linked to issues of responsibility, blame, and liability.
Attribution science does not aim to establish responsibility or blame, but rather to investigate drivers of change.
Attribution science is advancing rapidly, and has potential to increase understanding of how climate variability and change is influencing slow onset and extreme weather events, and how this interacts with other drivers of risk, including socio-economic drivers, to influence losses and damages.
Over time, some uncertainties in the science will be reduced, as the anthropogenic climate change signal becomes stronger, and understanding of climate variability and change develops.
However, some uncertainties will not be eliminated. Uncertainty is common in science, and does not prevent useful applications in policy, but might determine which applications are appropriate. It is important to highlight that in attribution studies, the strength of evidence varies substantially between different kinds of slow onset and extreme weather events, and between regions. Policy-makers should not expect the later emergence of conclusive evidence about the influence of climate variability and change on specific incidences of losses and damages; and, in particular, should not expect the strength of evidence to be equal between events, and between countries.
Rather than waiting for further confidence in attribution studies, there is potential to start working now to integrate science into policy and practice, to help understand and tackle drivers of losses and damages, informing prevention, recovery, rehabilitation, and transformation
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
The dosimetric effects of limited elective nodal irradiation in volumetric modulated arc therapy treatment planning for locally advanced non-small cell lung cancer
Objective—Contemporary radiotherapy guidelines for locally advanced non-small cell lung carcinoma (LA-NSCLC) recommend omitting elective nodal irradiation, despite the fact that evidence supporting this came primarily from older reports assessing comprehensive nodal coverage using 3D conformal techniques. Herein, we evaluated the dosimetric implications of the addition of limited elective nodal irradiation (LENI) to standard involved field irradiation (IFI) using volumetric modulated arc therapy (VMAT) planning. Method—Target volumes and organs-at-risk (OARs) were delineated on CT simulation images of 20 patients with LA-NSCLC. Two VMAT plans (IFI and LENI) were generated for each patient. Involved sites were treated to 60 Gy in 30 fractions for both IFI and LENI plans. Adjacent uninvolved nodal regions, considered high risk based on the primary tumor site and extent of nodal involvement, were treated to 51 Gy in 30 fractions in LENI plans using a simultaneous integrated boost approach. Results—All planning objectives for PTVs and OARs were achieved for both IFI and LENI plans. LENI resulted in significantly higher esophagus Dmean (15.3 vs. 22.5 Gy, p \u3c 0.01), spinal cord Dmax (34.9 vs. 42.4 Gy, p = 0.02) and lung Dmean (13.5 vs. 15.9 Gy, p = 0.02), V20 (23.0 vs. 27.9%, p = 0.03), and V5 (52.6 vs. 59.4%, p = 0.02). No differences were observed in heart parameters. On average, only 32.2% of the high-risk nodal volume received an incidental dose of 51 Gy when untargeted in IFI plans. Conclusion—The addition of LENI to VMAT plans for LA-NSCLC is feasible, with only modestly increased doses to OARs and marginal expected increase in associated toxicity
Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer
PURPOSE: Hypofractionated radiotherapy may overcome repopulation in rapidly proliferating tumors such as lung cancer. It is more convenient for the patients and reduces health care costs. This study reports our results on patients with medically inoperable, early stage, non-small cell lung cancer (NSCLC) treated with hypofractionation. MATERIALS AND METHODS: Stage T1-2N0 NSCLC patients were treated with hypofractionation alone, 52.5 Gy/15 fractions, in 3 weeks, with 3-dimensional conformal planning. T1-2N1 patients with the hilar lymphnode close to the primary tumor were also eligible for this treatment. We did not use any approach to reduce respiratory motion, but it was monitored in all patients. Elective nodal radiotherapy was not performed. Routine follow up included assessment for acute and late toxicity and radiological tumor response. Median follow up time was 29 months for the surviving patients. RESULTS: Thirty-two patients with a median age of 76 years, T1 = 15 and T2 = 17, were treated. Median planning target volume (PTV) volume was 150cc and median V16 of both lungs was 13%. The most important finding of this study is that toxicity was minimal. Two patients had grade ≤ 2 acute pneumonitis and 3 had mild (grade 1) acute esophagitis. There was no late toxicity. Actuarial 1 and 2-year overall survival rates are 78% and 56%, cancer specific survival rates (CSS) are 90% and 74%, and local relapse free survival rates are 93% and 76% respectively. CONCLUSION: 3-D planning, involved field hypofractionation at a dose of 52.5 Gy in 15 daily fractions is safe, well tolerated and easy radiation treatment for medically inoperable lung cancer patients. It shortens by half the traditional treatment. Results compare favorably with previously published studies. Further studies are needed to compare similar technique with other treatments such as surgery and stereotactic radiotherapy
Effects of the protein kinase inhibitors wortmannin and KN62 on cellular radiosensitivity and radiation-activated S phase and G1/S checkpoints in normal human fibroblasts
Wortmannin is a potent inhibitor of phosphatidylinositol (PI) 3-kinase and PI 3-kinase-related proteins (e.g. ATM), but it does not inhibit the activity of purified calmodulin-dependent protein kinase II (CaMKII). In the present study, we compared the effects of wortmannin and the CaMKII inhibitor KN62 on the response of normal human dermal fibroblast cultures to γ radiation. We demonstrate that wortmannin confers a phenotype on normal fibroblasts remarkably similar to that characteristic of cells homozygous for the ATM mutation. Thus wortmannin-treated normal fibroblasts exhibit increased sensitivity to radiation-induced cell killing, lack of temporary block in transition from G1 to S phase following irradiation (i.e. impaired G1/S checkpoint), and radioresistant DNA synthesis (i.e. impaired S phase checkpoint). Wortmannin-treated cultures display a diminished capacity for radiation-induced up-regulation of p53 protein and expression of p21WAF1, a p53-regulated gene involved in cell cycle arrest at the G1/S border; the treated cultures also exhibit decreased capacity for enhancement of CaMKII activity post-irradiation, known to be necessary for triggering the S phase checkpoint. We further demonstrate that KN62 confers a radioresistant DNA synthesis phenotype on normal fibroblasts and moderately potentiates their sensitivity to killing by γ rays, without modulating G1/S checkpoint, p53 up-regulation and p21WAF1 expression following radiation exposure. We conclude that CaMKII is involved in the radiation responsive signalling pathway mediating S phase checkpoint but not in the p53-dependent pathway controlling G1/S checkpoint, and that a wortmannin-sensitive kinase functions upstream in both pathways. © 1999 Cancer Research Campaig
- …
