2,101 research outputs found

    Spatial evolution of friction of a textured wafer surface

    Get PDF
    Abstract Mechanical failure of integrated circuits and micro-electro-mechanical systems (MEMS) demands new understanding of friction in small devices. In present research, we demonstrated an in situ approach to measure sliding friction of a patterned surface composing multi-materials and structures. The effects of materials and surface morphology on friction and electrical contact resistance were investigated. The material transfer at the interface of dissimilar materials was found to play dominating roles in friction. The current work provides important insights from the fundamentals of friction that benefit the design of new micro-devices.</jats:p

    Positioning Dispositions in Initial Teacher Education: An Action Research Approach

    Get PDF
    In spite of debate, ambiguity, and tension around teacher dispositions, in the past over two decades, the place of dispositions in initial teacher education (ITE) has been widely supported among policy makers and researchers. Specifically, debate on whether dispositions are teachable has largely given way to action to foster dispositions. Adopting a two-cycle participatory action research design, this study explored ways to teach the first-year teacher candidates’ dispositions in an early childhood ITE programme in New Zealand. The intervention included eight focus dispositions and corresponding strategies to teach each focus disposition. Data collection methods included student self-assessment surveys, individual and focus group interviews with students and teaching staff, team meetings, and a variety of pedagogical documentation. Ethnographic content analysis generated three themes: legitimacy of the intervention, experiential orientation of the intervention, and effect of the intervention. The study exemplifies how dispositions intervention can be incorporated in ITE programmes

    (Micro)evolutionary changes and the evolutionary potential of bird migration

    No full text
    Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here

    Intersubjective Identity Work and Sensemaking of Adult Learners on a Postgraduate Coaching Course: Finding the Balance in a World of Dynamic Complexity

    Get PDF
    This article explores how we make sense of identity in situations of dynamic complexity. It contributes to debates on how dynamic complexity, conceived as periods of heightened uncertainty, disrupts the balance between acting and thinking that is constitutive of sensemaking. The article follows narratives of adult learners (including the first author) aspiring to become academically trained coaches within an emerging industry. We examine dynamic complexity in terms of individuals relating to multiple contexts (e.g. biographical, learning and industry) arguing that each of these creates varying degrees of complexity as individuals relate to a multitude of others within them. We show that heightened uncertainty resulting from such complexity makes greater demands on identity work. This involves both failure (more persistent intransigence of identity) and success (transience of identity). We suggest a mediating role for relationality and reflexivity in making sense of identity as they offer a balance between acting and thinking. By exploring professional identity work of the first author in relation to the participants we explicate the intersubjective nature of identity work and sensemaking. The contribution we make is to theorize identity work as intersubjectively conducted

    Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy

    Get PDF
    AbstractActivation of pro-inflammatory and pro-angiogenic pathways in the retina and the bone marrow contributes to pathogenesis of diabetic retinopathy. We identified miR-15a as key regulator of both pro-inflammatory and pro-angiogenic pathways through direct binding and inhibition of the central enzyme in the sphingolipid metabolism, ASM, and the pro-angiogenic growth factor, VEGF-A. miR-15a was downregulated in diabetic retina and bone marrow cells. Over-expression of miR-15a downregulated, and inhibition of miR-15a upregulated ASM and VEGF-A expression in retinal cells. In addition to retinal effects, migration and retinal vascular repair function was impaired in miR-15a inhibitor-treated circulating angiogenic cells (CAC). Diabetic mice overexpressing miR-15a under Tie-2 promoter had normalized retinal permeability compared to wild type littermates. Importantly, miR-15a overexpression led to modulation toward nondiabetic levels, rather than complete inhibition of ASM and VEGF-A providing therapeutic effect without detrimental consequences of ASM and VEGF-A deficiencies

    Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models

    Get PDF
    Background: Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. Results: Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. Conclusions: Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies

    Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d'Ivoire

    Get PDF
    BACKGROUND: Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.METHODOLOGY: A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central Côte d'Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.PRINCIPAL FINDINGS: Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.CONCLUSIONS/SIGNIFICANCE: Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases

    Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop

    Get PDF
    Rationale: In the endothelium, insulin stimulates endothelial NO synthase (eNOS) to generate the antiatherosclerotic signaling radical NO. Insulin-resistant type 2 diabetes mellitus is associated with reduced NO availability and accelerated atherosclerosis. The effect of enhancing endothelial insulin sensitivity on NO availability is unclear. Objective: To answer this question, we generated a mouse with endothelial cell (EC)–specific overexpression of the human insulin receptor (hIRECO) using the Tie2 promoter–enhancer. Methods and Results: hIRECO demonstrated significant endothelial dysfunction measured by blunted endothelium-dependent vasorelaxation to acetylcholine, which was normalized by a specific Nox2 NADPH oxidase inhibitor. Insulin-stimulated phosphorylation of protein kinase B was increased in hIRECO EC as was Nox2 NADPH oxidase–dependent generation of superoxide, whereas insulin-stimulated and shear stress–stimulated eNOS activations were blunted. Phosphorylation at the inhibitory residue Y657 of eNOS and expression of proline-rich tyrosine kinase 2 that phosphorylates this residue were significantly higher in hIRECO EC. Inhibition of proline-rich tyrosine kinase 2 improved insulin-induced and shear stress–induced eNOS activation in hIRECO EC. Conclusions: Enhancing insulin sensitivity specifically in EC leads to a paradoxical decline in endothelial function, mediated by increased tyrosine phosphorylation of eNOS and excess Nox2-derived superoxide. Increased EC insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide. Inhibition of proline-rich tyrosine kinase 2 restores insulin-induced and shear stress–induced NO production. This study demonstrates for the first time that increased endothelial insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide

    Aggregation Pheromone for an Invasive Mussel Consists of a Precise Combination of Three Common Purines.

    Get PDF
    Most marine benthic invertebrates have a pelagic larval phase, after which they settle preferentially on or near conspecific adults, forming aggregations. Although settlement pheromones from conspecific adults have been implicated as critical drivers of aggregation for more than 30 years, surprisingly few have been unambiguously identified. Here we show that in the invasive dreissenid mussel Mytilopsis sallei (an ecological and economic pest), three common purines (adenosine, inosine, and hypoxanthine) released from adults in a synergistic and precise ratio (1:1.125:3.25) serve as an aggregation pheromone by inducing conspecific larval settlement and metamorphosis. Our results demonstrate that simple common metabolites can function as species-specific pheromones when present in precise combinations. This study provides important insights into our understanding of the ecology and communication processes of invasive organisms and indicates that the combination and ratio of purines might be critical for purine-based signaling systems that are fundamental and widespread in nature
    • …
    corecore