126 research outputs found
Effect of Induced Refractive Error and Nuclear Sclerotic Cataracts on Ishihara Colour Plate Testing
Objective: To determine the effect of induced refractive blur and nuclear sclerotic (NS) cataracts on Ishihara colour plate (ICP) scores.
Design: Prospective evaluation of a diagnostic test
Participants: Patients who presented to Hotel Dieu Hospital Eye clinic between January and March 2010 with either a lone diagnosis of nuclear sclerotic cataracts, or with no identified ocular disease with complete examination.
Methods: Patients were divided into two groups: those having no identified ocular disease on examination, and those with a lone diagnosis of NS cataracts. The first group was refractively blurred with +3D, +6D, +9D and +12D lenses. Best corrected visual acuity (BCVA) at near and ICP scores was obtained from both groups.
Results: There were 20 patients in each group. BCVA at near and ICP values declined with increasing amounts of plus lenses as expected. With the application of the +3D, +6D, +9D, and +12D lenses, the association between ICP scores and BCVA at near decreased (-0.845, -0.678, -0.374, and -0.363 respectively). There was little clinical decline in absolute ICP scores until lenses of +9D (mean BCVA at near = 20/400) or greater were applied. The correlation between ICP scores and BCVA at near declines due to NS cataracts was -0.53.
Conclusion: ICP testing is valid to BCVA at near of 20/100 when the acuity decline is due solely to NS cataracts. Further study is required to determine whether or not severe vision loss due to NS cataracts affects ICP scores and at what visual acuity
Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates
Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid
Molecular psychiatry of zebrafish
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research
Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence
Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation
Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination
Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92–95% (166–192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome
Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging
Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes
One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA “master regulators” (miR-22 and miR-125) and one candidate pair of “master co-regulators” (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p = 0.045), total homocysteine levels (tHcy) (p = 0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM
Ulnar-sided wrist pain. II. Clinical imaging and treatment
Pain at the ulnar aspect of the wrist is a diagnostic challenge for hand surgeons and radiologists due to the small and complex anatomical structures involved. In this article, imaging modalities including radiography, arthrography, ultrasound (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography are compared with regard to differential diagnosis. Clinical imaging findings are reviewed for a more comprehensive understanding of this disorder. Treatments for the common diseases that cause the ulnar-sided wrist pain including extensor carpi ulnaris (ECU) tendonitis, flexor carpi ulnaris (FCU) tendonitis, pisotriquetral arthritis, triangular fibrocartilage complex (TFCC) lesions, ulnar impaction, lunotriquetral (LT) instability, and distal radioulnar joint (DRUJ) instability are reviewed
Complex inner core boundary from frequency characteristics of the reflection coefficients of PKiKP waves observed by Hi-net
- …
