72 research outputs found

    Expansion of CD4+CD25+ helper T cells without regulatory function in smoking and COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells along with enhanced intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface.</p> <p>Method</p> <p>Regulatory T cells were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers.</p> <p>Results</p> <p>In smokers with normal lung function, the expression of CD25<sup>+</sup>CD4<sup>+ </sup>was increased, whereas the proportions of FoxP3<sup>+ </sup>and CD127<sup>+ </sup>were unchanged compared to never-smokers. Among CD4<sup>+ </sup>cells expressing high levels of CD25, the proportion of FoxP3<sup>+ </sup>cells was decreased and the percentage of CD127<sup>+ </sup>was increased in smokers with normal lung function. CD4<sup>+</sup>CD25<sup>+ </sup>cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers.</p> <p>Conclusion</p> <p>The reduction of FoxP3 expression in BALF from smokers with normal lung function indicates that the increase in CD25 expression is not associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25<sup>+ </sup>helper T-cell population in smokers and stable COPD. Therefore, we suggest a smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development.</p

    In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver

    Get PDF
    Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown. Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses. Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1). Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism

    Treatment options for patients with triple-negative breast cancer

    Get PDF
    Breast cancer is a heterogeneous disease composed of different subtypes, characterized by their different clinicopathological characteristics, prognoses and responses to treatment. In the past decade, significant advances have been made in the treatment of breast cancer sensitive to hormonal treatments, as well as in patients whose malignant cells overexpress or amplify HER2. In contrast, mainly due to the lack of molecular targets, little progress has been made in the treatment of patients with triple-negative breast cancer. Recent improved understanding of the natural history, pathophysiology, and molecular features of triple-negative breast cancers have provided new insights into management and therapeutic strategies for women affected with this entity. Ongoing and planned translational clinical trials are likely to optimize and improve treatment of women with this disease

    Antiangiogenic therapy for breast cancer

    Get PDF
    Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria

    Ovotoxic Effects of Galactose Involve Attenuation of Follicle-Stimulating Hormone Bioactivity and Up-Regulation of Granulosa Cell p53 Expression

    Get PDF
    Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented galactose-induced granulosa cell p53 expression. We conclude that the ovotoxic effects of galactose involves attenuation of FSH bioactivity that renders the ovary resistant to gonadotrophins leading to increased granulosa cell expression of p53 and follicular atresia

    Present and future evolution of advanced breast cancer therapy

    Get PDF
    Although the introduction of novel therapies and drug combinations has improved the prognosis of metastatic breast cancer, the disease remains incurable. Increased knowledge of the biology and the molecular alterations in breast cancer has facilitated the design of targeted therapies. These agents include receptor and nonreceptor tyrosine kinase inhibitors (epidermal growth factor receptor family), intracellular signaling pathways (phosphatidylinositol-3-kinase, AKT, mammalian target of rapamycin) angiogenesis inhibitors and agents that interfere with DNA repair (poly(ADP-ribose) polymerase inhibitors). In the present review, we present the most promising studies of these new targeted therapies and novel combinations of targeted therapies with cytotoxic agents

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore