443 research outputs found

    Interaction of metal phthalocyanines with carbon zigzag and armchair nanotubes with different diameters

    Get PDF
    Quantum-chemical calculations of the association of metal free, cobalt, copper and zinc phthalocyanines (MPc) with carbon zigzag and armchair nanotubes (CNTs) with diameters in the range of 7–14 Å were carried out by the DFT method with the use of BH van der Waals density functional and DZP atomic basis set. It was shown that interaction energy between the phthalocyanine molecules and the CNTs, as a whole, increases with an increase of the diameter of carbon nanotubes. However, in the case of CNT(n,0) the energy reaches its maximal value at n = 16 or 17 depending on the central metal atom and phthalocyanine orientation on the carbon nanotubes surface. Up to diameter of 10.5 Å of the CNTs, stronger binding of the considered MPc macrocyclic molecules is observed with carbon armchair nanotubes. However, in the case of higher diameters the phthalocyanines are associated more strongly with the zigzag CNTs

    A framework to evaluate the viability of robotic process automation for business process activities

    Full text link
    Robotic process automation (RPA) is a technology for centralized automation of business processes. RPA automates user interaction with graphical user interfaces, whereby it promises efficiency gains and a reduction of human negligence during process execution. To harness these benefits, organizations face the challenge of classifying process activities as viable automation candidates for RPA. Therefore, this work aims to support practitioners in evaluating RPA automation candidates. We design a framework that consists of thirteen criteria grouped into five perspectives which offer different evaluation aspects. These criteria leverage a profound understanding of the process step. We demonstrate and evaluate the framework by applying it to a real-life data set.Comment: This is an accepted manuscript for the "RPA Forum" at the "Int. Conference on Business Process Management (BPM 2020)". The final authenticated version is available online at https://doi.org/10.1007/978-3-030-58779-6_1

    Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana'a metropolitan city, Yemen.

    Get PDF
    An effective and efficient planning of an urban growth and land use changes and its impact on the environment requires information about growth trends and patterns amongst other important information. Over the years, many urban growth models have been developed and used in the developed countries for forecasting growth patterns. In the developing countries however, there exist a very few studies showing the application of these models and their performances. In this study two models such as cellular automata (CA) and the SLEUTH models are applied in a geographical information system (GIS) to simulate and predict the urban growth and land use change for the City of Sana’a (Yemen) for the period 2004–2020. GIS based maps were generated for the urban growth pattern of the city which was further analyzed using geo-statistical techniques. During the models calibration process, a total of 35 years of time series dataset such as historical topographical maps, aerial photographs and satellite imageries was used to identify the parameters that influenced the urban growth. The validation result showed an overall accuracy of 99.6 %; with the producer’s accuracy of 83.3 % and the user’s accuracy 83.6 %. The SLEUTH model used the best fit growth rule parameters during the calibration to forecasting future urban growth pattern and generated various probability maps in which the individual grid cells are urbanized assuming unique “urban growth signatures”. The models generated future urban growth pattern and land use changes from the period 2004–2020. Both models proved effective in forecasting growth pattern that will be useful in planning and decision making. In comparison, the CA model growth pattern showed high density development, in which growth edges were filled and clusters were merged together to form a compact built-up area wherein less agricultural lands were included. On the contrary, the SLEUTH model growth pattern showed more urban sprawl and low-density development that included substantial areas of agricultural lands

    Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions

    Get PDF
    This paper provides an overview of the base-year assumptions and baseline projections for the set of models participating in the LAMP and CLIMACAP projects. We present the range in baseline projections for Latin America, and identify key differences between model projections including how these projections compare to historic trends. We find relatively large differences across models in base year assumptions related to population, GDP, energy and CO2 emissions due to the use of different data sources, but also conclude that this does not influence the range of projections. We find that population and GDP projections across models span a broad range, comparable to the range represented by the set of Shared Socioeconomic Pathways (SSPs). Kaya-factor decomposition indicates that the set of baseline scenarios mirrors trends experienced over the past decades. Emissions in Latin America are projected to rise as a result of GDP and population growth and a minor shift in the energy mix toward fossil fuels. Most scenarios assume a somewhat higher GDP growth than historically observed and continued decline of population growth. Minor changes in energy intensity or energy mix are projected over the next few decades

    Model and experiences of initiating collaboration with traditional healers in validation of ethnomedicines for HIV/AIDS in Namibia

    Get PDF
    Many people with Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) in Namibia have access to antiretroviral drugs but some still use traditional medicines to treat opportunistic infections and offset side-effects from antiretroviral medication. Namibia has a rich biodiversity of indigenous plants that could contain novel anti-HIV agents. However, such medicinal plants have not been identified and properly documented. Various ethnomedicines used to treat HIV/AIDS opportunistic infections have not been scientifically validated for safety and efficacy. These limitations are mostly attributable to the lack of collaboration between biomedical scientists and traditional healers. This paper presents a five-step contextual model for initiating collaboration with Namibian traditional healers in order that candidate plants that may contain novel anti-HIV agents are identified, and traditional medicines used to treat HIV/AIDS opportunistic infections are subjected to scientific validation. The model includes key structures and processes used to initiate collaboration with traditional healers in Namibia; namely, the National Biosciences Forum, a steering committee with the University of Namibia (UNAM) as the focal point, a study tour to Zambia and South Africa where other collaborative frameworks were examined, commemorations of the African Traditional Medicine Day (ATMD), and consultations with stakeholders in north-eastern Namibia. Experiences from these structures and processes are discussed. All traditional healers in north-eastern Namibia were willing to collaborate with UNAM in order that their traditional medicines could be subjected to scientific validation. The current study provides a framework for future collaboration with traditional healers and the selection of candidate anti-HIV medicinal plants and ethnomedicines for scientific testing in Namibia

    Solid-state fermentation of oil palm frond petiole for lignin peroxidase and xylanase-rich cocktail production

    Get PDF
    In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1–0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose–lignin (I900/1511), and lignin–hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition

    Active fixturing: literature review and future research directions

    Get PDF
    Fixtures are used to fixate, position and support workpieces and represent a crucial tool in manufacturing. Their performance determines the result of the whole manufacturing process of a product. There is a vast amount of research done on automatic fixture layout synthesis and optimisation and fixture design verification. Most of this work considers fixture mechanics to be static and the fixture elements to be passive. However, a new generation of fixtures has emerged that has actuated fixture elements for active control of the part–fixture system during manufacturing operations to increase the end product quality. This paper analyses the latest studies in the field of active fixture design and its relationship with flexible and reconfigurable fixturing systems. First, a brief introduction is given on the importance of research of fixturing systems. Secondly, the basics of workholding and fixture design are visited, after which the state-of-the-art in active fixturing and related concepts is presented. Fourthly, part–fixture dynamics and design strategies which take these into account are discussed. Fifthly, the control strategies used in active fixturing systems are examined. Finally, some final conclusions and prospective future research directions are presented

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity
    corecore