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This paper provides an overview of the base-year assumptions and baseline projections for the set of models partic-
ipating in the LAMP and CLIMACAP projects. We present the range in baseline projections for Latin America, and
identify key differences between model projections including how these projections compare to historic trends.
We find relatively large differences across models in base year assumptions related to population, GDP, energy
and CO2 emissions due to the use of different data sources, but also conclude that this does not influence the
range of projections. We find that population and GDP projections across models span a broad range, comparable
to the range represented by the set of Shared Socioeconomic Pathways (SSPs). Kaya-factor decomposition indicates
that the set of baseline scenarios mirrors trends experienced over the past decades. Emissions in Latin America are
projected to rise as a result of GDP and population growth and a minor shift in the energy mix toward fossil fuels.
Most scenarios assume a somewhat higher GDP growth than historically observed and continued decline of popu-
lation growth. Minor changes in energy intensity or energy mix are projected over the next few decades.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since 1880, global mean temperatures have risen by approximately
0.85 °C; another 0.3 °C to 4.8 °C is likely to occur by the end of the
coming century (IPCC, 2013). Limiting temperature rise to the lower
end of this range will require substantial mitigation effort. Integrated
assessment models (IAMs) are often used to support decisions on
heric Research (NCAR) Climate
lder, CO 80307 United States.
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mitigation policy by developing scenarios that depict possible trends in
energy production and emissions, both in the absence of climate
policies (i.e. “baseline” scenarios) and in the presence of climate policies
(i.e., “policy” scenarios). Baseline scenarios provide useful information
for assessing why policies are needed and what the potential cost of
policy interventionwill be. Key inputs to these baseline scenarios are pro-
jections of driving forces such as population, economic activity, and as-
sumptions on technology change, which can differ significantly across
models. As a result, keymodel outputs from baseline scenarios, including
projections of energy use and emissions over time in the absence of cli-
mate policy can differ significantly as well.

The purpose of this paper is to provide background information on
model baseline assumptions and projections which will allow us to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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explain differences inmodel results explored in subsequent papers in this
special issue. More information on the model comparison project de-
scribed in this special issue can be found in van der Zwaan et al. (2015).
Specifically,weprovide an overviewof core baseline projections for coun-
tries in the Latin American region. Previous work has assessed baseline
scenarios in Asia (Blanford et al., 2012) and Africa (Calvin et al., 2013).
We follow a similar methodology to those studies and use the results
from a set of models participating in a recent model intercomparison ex-
ercise: the CLIMACAP-LAMP project.2 As part of our study, we present the
range in core baseline projections for Latin America across participating
models, identify key differences betweenmodel projections, and compare
these projections to historic trends. Finally, we compare base-year data
sources used to parameterize the models in order to better understand
base-year differences across the models. Additional information on the
scenarios andmodels included in this study is available in subsequent pa-
pers in this special issue—i.e., van der Zwaan et al. (in this issue) on tech-
nology transformation; Calvin et al. (2016–in this issue) on agriculture
and land use; and Clarke et al. (2016–in this issue) on the response to cli-
mate policy.

The geographic focus of this study is the Latin American regions that
are most widely represented in the set of participating models: Brazil,
Mexico, the full region of Latin America (including the Caribbean), and
the world. A smaller set of models also provides results for Argentina,
Colombia and Chile which can be found in the Electronic Supplementary
Material (ESM). We refer the reader to other studies in this special issue
for more detailed information on Argentina (Di Sbriovacca et al., 2016–
in this issue), Brazil (Lucena et al., 2016–in this issue), Colombia
(Calderon et al., 2016–in this issue), and Mexico (Veysey et al., 2016–in
this issue). This study covers the period of 2005–2050, with results for
the longer term (up to 2100) provided in the ESM. Themodels participat-
ing in the CLIMACAP-LAMP project are ADAGE (Beach et al., 2011), EPPA
(Paltsev et al., 2005; Paltsev et al., 2014), GCAM(Wise et al., 2014), IMAGE
(Stehfest et al., 2014; van Vuuren et al., 2007), iPETS (O'Neill et al., 2012),
LEAP-UNAM, MEG4C (Alvarez et al., 2014; DNP et al., 2014; MLED, 2013;
World Bank and DNP, 2015), MESSAGE-Brazil (Nogueira et al., 2014),
Phoenix (Daenzer et al., 2014), POLES (Criqui et al., 2015; Griffin et al.,
2014; Kitous et al., 2010; Markandya et al., 2014), TIAM-ECN (Kober et
al., 2014; Van Der Zwaan et al., 2013) and TIAM-WORLD (Kanudia et al.,
2014; Labriet et al., 2013).

The paper is organized as follows. Section 2 discusses the base-year
data and model assumptions. Section 3 presents the model core base-
line projections for the participating models and compares these pro-
jections to historical trends. In Section 4 we provide results from a
Kaya-factor decomposition analysis to identify the key factors driving
changes in emissions and variation acrossmodels. Finally, Section 5 pro-
vides a closer examination of historic trends in Latin America and how
these trends compare to the core baseline scenario projections.

2. The starting point: base-year data

A number of sources exist for historical data on population, GDP,
energy use and emissions. It is common for these variables to differ
across data sources. While the models partly use the same data sources
(see Table 1), still differences exist, which contributes to differences in
the base-year as presented in Section 2.2. Furthermore, models use
different base years, so that differences may exist even if the same
data sources are used. Finally, data is regularly updated. We focus our
comparison of base-year data on the year 2005, as this is the most
2 The Integrated Climate Modelling and Capacity Building Project in Latin America
(CLIMACAP) is a European Commission funded effort focused on analyzing the effects of
mitigation strategies in key Latin American countries. The Latin American Modeling Pro-
ject (LAMP) is a similar effort funded by the U.S. Environmental Protection Agency and
theU.S. Agency for International Development. Coordinated effort between these two pro-
jects has allowed for the development of a multi-model comparison project focused on
mitigation in Latin America. More information on the two projects is available at:
https://tntcat.iiasa.ac.at/CLIMACAP-LAMPDB/.
commonly adopted base year (i.e., eleven out of thirteen models
participating in the CLIMACAP-LAMP project). The goal of this section
is to highlight the differences in estimates across external datasets as
it helps to explain why there are differences in the reported base
year data for the CLIMACAP-LAMP models. Given the larger scope of
this paper, we do not attempt to explain why these differences exist in
the published data. Section 2.1 reviews the data (published by a number
of sources) used to parameterize the models, and Section 2.2 examines
the variance in base-year estimates submitted to the CLIMACAP-
LAMP scenarios database.

2.1. Variation across historical databases

Fig. 1 compares 2005 base year variables across data sources,
many of which are used by the models participating in the
CLIMACAP-LAMP project.3 The figure shows deviations in 2005
values for GDP, CO2 emissions, population, and primary energy use
from different data sources relative to one source, often the source
most commonly used by the models. In some cases (e.g., GDP), values
are compared across a number of unique data sources. In other cases,
values are also compared across different versions of a single source.
In the figure, values for 2005 are provided for each of the individual
CLIMACAP-LAMP regions (Argentina, Brazil, Chile, Colombia, and
Mexico) as well as for the aggregate Latin American region (LAM)
which includes the Caribbean, and Central and South America.

As shown in Fig. 1, the lowest variation across data sources is found
with GDP. It is less than 1% for the reported countries and sources.
The widest range of variation across data sources exists in the case of
the aggregate LAM region. The value of GDP from the World Bank and
the UN match, but the IMF and IEA GDP estimates are approximately
4–5% lower.

The spread in population data is similar to the spread observed for
GDP. In the case of Brazil and Columbia, the data for population aremostly
in agreement. Population estimates for Mexico are similar across all data
sources except for the 2013 UN revision (the data source of reference)
which is 4–5% higher. This increase in the estimation forMexico's popula-
tion goes back to 2050 in the 2013 UN report and coincides with higher
estimates for crude birth rate during that same 55-year period. In the
case of LAM, the three data sources are consistently lower than the refer-
ence data source, with a range of estimates of 1–5%.

The 2007 IEA primary energy estimates are within ±5% of the 2013
data, but there is no consistent story across regions. The 2007 estimates
for Argentina, Brazil, and LAM are lower than current estimates, while
they are higher for Chile, Colombia, and Mexico. This partly explains
why also models may produce different base year estimates while
using data published by a single agency.

The reference data for CO2 emissions from the CDIAC include emis-
sions from natural gas flaring and cement production while the three
comparison sources do not. As a result, reference source emissions are
higher in all regions. Aside from this, there are no discernable patterns
in the data. For LAM, Argentina, Chile, andMexico, the CDIAC emissions
estimatewithoutflaring and cement is higher than the IEA estimate, but
for Colombia, these emission estimates are lower than the IEA emission
estimates by a few points. In the case of Brazil, the CDIAC emission esti-
mates without flaring and cement matches the current IEA estimates.
There are notable differences between the two versions of the IEA
data: the current version shows higher emissions from LAM and
Argentina, but lower emissions for Brazil, Chile, Colombia, and Mexico.

2.2. Variation across models

Across the four key reporting variables – GDP, population, primary
energy, and CO2 emissions from fossil fuel combustion and industrial
3 For a detailed description of why these differences exist, see Chaturvedi et al. (2012),
which reviews data sources used in the Asian Modeling Exercise.

https://tntcat.iiasa.ac.at/CLIMACAP-LAMPDB/


Table 1
Data sources for models participating in LAMP and CLIMACAP.

Model Population GDP Primary energy Emission factors

ADAGE UN GTAP, IEA, IMF GTAP, IEA EPA, IEA, EDGAR, CDIAC
EPPA UN GTAP, IMF, NBSC GTAP, IEA EPA, BP, IEA
GCAM UN WB, UN IEA CDIAC,IEA
IMAGE UN WB, UN IEA IEA, EDGAR
iPETS UN GTAP IEA IEA
MEG4C DANE MHCP N/A Colombias National GHG inventory
MESSAGE-Brazil UN IEA National energy balance Brazilian National Communication, IPCC
Phoenix UN GTAP, PWT GTAP, IEA GTAP, CDIAC
POLES UN WB IEA, Eurostat, Enerdata IEA, EDGAR
TIAM-ECN UN WB, IEA and national statistics IEA and national statistics IEA, EDGAR, EPA
TIAM-WORLD UN IMF IEA IEA
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processes –we explore variation across models. Fig. 2 shows the differ-
ence (in percent) between 2005 and 2010 base year results submitted
by the modeling groups and 2005 and 2010 historical data from the
same reference data source as in Fig. 1. The variation betweenmodeling
results and historical data exists for a number of reasons:

1. While the CLIMACAP-LAMP exercise has adopted 2005 as the base
year to standardize model reporting, this is not the base year for
some models requiring modeling teams to extrapolate to 2005.

2. Models may be using different data sets or different versions of the
data from a particular source to parameterize the model.

3. Differences in model specification, particularly for energy and
emissions, may make a straight comparison across models and
with historical data difficult.

The models participating in CLIMACAP-LAMP adopt either 2004,
2005, or 2010 as their base year. The four computable general equilibri-
um (CGE) models (ADAGE, EPPA, iPETS, and Phoenix) use the Global
Trade Analysis Project (GTAP) v7.1 database for calibration, which is
based on 2004data (Narayanan andWalmsley, 2008). For thesemodels,
exactly reproducing the 2004 base year data set is a key aspect of
model calibration. To generate the 2005 data required for CLIMACAP-
Fig. 1. Variation across data sources used for model calibration. The reference data source for G
data base (Boden et al., 2013) for CO2 emissions from fossil fuel combustion and industrial sou
energy. Reference year: 2005.
LAMP, the models are stepped forward one year, with the assumption
that this should still provide fairly accurate results. Differences do arise,
however, and may be the result of variations in model specification as
well as the modelers' choice of additional data sources and assumptions
required to step themodel through time. For instance, for use in other ap-
plications, ADAGE uses secondary data to grow the balanced GTAP data
from 2004 to 2010, and rebalances to represent a 2010 base year. Thus,
ADAGE adopts a 2010 base year rather than 2005. Aside from the CGE
models, LEAP-FB and MESSAGE-Brazil adopt 2010 as their base year,
while the remaining modeling teams adopt 2005 as their base year,
which can be calibrated to historical data over a number of years. For
IMAGE, the notion of base year is a little less well defined, as the model
starts is calculations in 1970, while it partly uses historic data for the
1970–2010 period. Energy use and CO2 emissions are model output.
The variation observed across these models, therefore, may be the result
of differences in data sources, as highlighted in Section 2.1.

There seems to be the most agreement, both across models and
across data sources, in estimates of population, which can be expected
given that all but one of the models report using the UN estimates.
Mexico is the one region exhibiting the most variation, with a number
of models reporting population estimates that are approximately 4%
DP is theWorld Bank (2014); the 2013 UN revision (UN, 2013) for population; the CDIAC
rces (including natural gas flaring and cement production); and IEA (2013a,b)for primary



Fig. 2. Variation between reference data and the base-year results, either 2005 or 2010, submitted bymodels participating in the LAMP and CLIMACAP projects. The figure does not show
the difference between the 2005 and 2010 reference data; rather each model's data point is relative to its respective base year.
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below the UN 2013 revision estimate and the remaining models
reporting estimates equal to the UN 2013 revision estimate. It appears
that this is the result of the UN revising previous estimates, and the
models not adopting the revision yet, as evident in Fig. 1. UN estimates
from the earlier 2010 edition are 3.84% below the 2013 revised
estimates. The aggregate LAM population data for most models are
also lower than current estimates, as shown in Fig. 1.

With a few exceptions, most models that take GDP as an exogenous
input are using 2005 estimates from theWorld Bank. The largest differ-
ences between 2005GDPmodel estimates and theWorld BankGDPhis-
torical estimates are reported for the aggregate LAM region. This is also
the region with the largest degree of variation across data sources.

Primary energy estimates are compared to historical primary energy
estimates from the IEA (IEA, 2013a,b), the source used by most of the
models.4 The majority of reported primary energy data fall within 10%
of the IEA estimate. The results reported for Chile and Colombia are high
and appear to be close to the 2007 IEA estimate. This explanation does
not hold for the remaining regions, where model primary energy results
are both above and below the current IEA estimates and not
consistently in linewith the 2007 publication. Recognizing that the aggre-
gate primary energy data in Fig. 2 does not provide any information about
the composition of a region's energy and or insight into howdemandmay
change over the course of the core baseline scenario, Section 3.3 provides
the base year primary energy data by fuel and shows how energymix
is expected to change throughout the core baseline scenario, and
Section 5 compares the model results to historical data.

There is much less agreement across models and data sources
for CO2 emissions than for population and GDP. In Fig. 2, the CDIAC
emissions estimate is compared to the models' reported emissions
from fossil fuel combustion and industrial processes. The models are
reporting CO2 estimates that are either close to the CDIAC's historical
estimates or notably higher. Many of these models report using IEA
data as a reference, but for the reasons noted in Section 2.1, we would
4 Note that primary energy in this study is defined as direct equivalent, which means
that electricity generated from nuclear and non-biomass renewables is represented as
the electricity output. This is opposed to primary equivalent, in which these technologies
would be represented with a similar efficiency loss as fossil fuel power generation.
expect the model generated emissions to be lower, not higher, than
the CDIAC estimates. Differences in model specification may be the pri-
mary reason for this variation. First, all models are tracking emissions
from fossil fuels, but there is variation across the models as to how
this is done (see Table 2 for detail). In most of the models in this exer-
cise, emissions are determined endogenously by applying fuel-specific
emission factors to estimates of fossil fuel consumption by energy
type. Ideally, these emission factors should vary across regions, but
with the exception of four models, manymodels use identical emission
factors for all regions. Second, within the industry sector, some models
are not tracking emissions from gas flaring and cement production or
the estimates are included in aggregate emissions and cannot be report-
ed separately. In the former case, wewould expect their emissions to be
lower than the reference historical estimates from CDIAC and close to
each other in Fig. 2. Another large source of variation has to do with
the specification of land use change, but we have tried to minimize
this difference by only using emissions from fossil fuel combustion
and industrial sources within this section. Models tracking land use
change and the corresponding emissions may report total emissions
that are higher or lower than the fossil fuel and industrial emissions
reported here. Finally, some models report emissions from biomass
fuels while other models make a simplifying assumption that on net
emissions from these sources are zero. A model reporting emissions
from biomass fuels (i.e. a model that reported “yes” in the bioenergy col-
umn of Table 2) would have an additional source of emissions from in-
dustrial processes that use biomass fuels and from the electricity
generated by biomass than a model that does not track emissions from
bioenergy. Models that answered “no” in the bioenergy column may
track the use of biomass fuels including electricity by industry and house-
holds, but they would report a zero for the emissions from this energy
source. This difference may explain some of the variation across models
and the higher estimates relative to the reference emissions estimates.

While the variation discussed in this sectionmaymake comparing the
model results challenging, it is not necessarily a problem that has to be
fixed. Some of the base year variation is due to differences in the models'
referenced historical data; a true source of uncertainty that cannot be set-
tledwithin this exercise and standardizationwould create a false sense of
certainty. Other base year variation may be due to differences in the



Table 2
Participating models' CO2 emissions detail.

Model Calculated endogenously? Factors vary by region? Tracking emissions from:

Land use change Natural gas flaring Cement Production Bioenergy

ADAGE Yes Yes Yes No No Yes
EPPA Yes No Yes No Yes Yes
GCAM Yes No Yes Yes Yes Yes
IMAGE Yes No Yes Yes Yes Yes
iPETS Yes Yes No No No No
MEG4C Yes – No No No No
MESSAGE-Brazil Yes No No Yes No Only BioCCS
Phoenix Yes Yes No No No No
POLES Yes Only for transport liquid Yes No Yes No
TIAM-ECN Yes Yes Yes Yes Yes Yes
TIAM-WORLD Yes Yes Yes Yes Yes Considered CO2-neutral
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construction of themodel or the fact that somemodels have not updated
their base year parameters to the most recent estimates. A final source of
variation across the models is the system boundaries which determine
which emission sources are included or excluded.

The remainder of this paper will explore differences in core baseline
projections across the models participating in the CLIMACAP-LAMP
project. Some of the base year variation discussed in this section may
perpetuate through the model results, leading to a range of core
baseline scenarios across models. To analyze the impact of the base year
variations on future projections, the ESM provides a series of figures
(Fig. S2–S5) that harmonize the model projections to the year 2010.5

These figures indicate that the range of set of core baseline projections
does not change significantly when the base year uncertainty is removed.

3. Overview of core baseline scenarios

A dataset of selected output from 13 participating models (ADAGE,
EPPA, GCAM, IMAGE, iPETS, LEAP-FB, LEAP-UNAM, MEG4C, MESSAGE-
Brazil, Phoenix, POLES, TIAM-ECN and TIAM-WORLD) was generated
for the CLIMACAP-LAMP project.6 There are two versions of the TIAM
model with different regional coverage (TIAM-ECN and TIAM-
WORLD) and the iPETS model provides two baseline scenarios (iPETS-
SSP2 and iPETS-SSP5). In this sectionwe present the set of core baseline
projections for 2005–2050 for the world, Latin America as a whole,
Mexico and Brazil. Additional information for several Latin American
countries is available in the dataset, and available in the ESM.

As part of the exercise, each modeling team was free to choose its
key model assumptions, such as economic and population growth
rates, energy efficiency improvements and technology development.
Therefore, some differences in the results are due to different model
structures, while others are due to different assumptions regarding
future social, economic, and technological development. In addition,
no harmonization was made for the present and future energy and
environmental policies in these core baseline scenarios. For example,
some models include regulatory mechanisms related to renewables,
biofuels and land-use, while others do not. The appendix provides an
overview of which policies are included in the core baseline scenarios.
Many of the participating models have global coverage with regional
disaggregation; however, some models focus solely on particular Latin
American countries. The results for Latin America from the global
models are also affected by socioeconomic development in other
world regions. In this paper, we use the word ‘projection’ for the
scenario results of the models, but it is worth noting that population
and GDP are assumptions taken from other models or projects for
most models and are not actually projected by the models in the
CLIMACAP-LAMP project.
5 Here, the year 2010 was chosen rather than 2005, in order to include several models
for which 2010 is the earliest reported year.

6 The CLIMACAP-LAMP database with a limited number of variables is available at
https://secure.iiasa.ac.at/web-apps/ene/LAMPDB/.
3.1. Population

Fig. 3 present population projections from the core baseline scenarios
of the set of participatingmodels. The figure also provides ranges of pop-
ulation projections (denoted by the shaded area) from the recent Shared
Socioeconomic Pathways (SSPs) exercise that defines five possible paths
that human societies could follow over the next century (Ebi et al., 2013;
O'Neill et al., 2014; van Vuuren et al., 2014). The ranges do not indicate
probabilistic properties; instead, they simply indicate how the future
might unfold in different scenarios. The global population grows from
approximately 6.5 billion people in 2005 to 8–8.5 billion in 2030 and
to 8.5–9.7 billion in 2050. The range of population projections from the
CLIMACAP-LAMP participating models is similar to the range of popula-
tion projections in the SSPs. The ranges are driven by assumptions
regarding fertility and mortality rates. Latin America's population is
projected to grow from about 560 million people in 2005 to about
650–720 million in 2030 and to about 650–810 million in 2050.
Similar to the global projections, the range of Latin America's population
projections from the participating models is similar to the SSP range.
Population projections for Mexico and Brazil have similar tendencies to
the world and the aggregate Latin America region. None of the models
project an increase in population growth for 2005–2050. Most of the
models show a slowdown in population growth after 2030 due to a
decline in fertility rates.
3.2. Economy

The global economy is growing over time both in absolute and per
capita terms as shown in Figs. 4 and 5. As shown in Fig. 4, gross domestic
product (GDP) is expected to grow by two to four-folds between 2005
and 2050. Initially, the participating models project a wider range of
GDP in comparison to the SSPs partly due to differences in base year
(2005) GDP values acrossmodels. After 2030, however, the SSPs project
a wider range in GDP, especially in the higher economic growth scenar-
io. We applymarket exchange rates (MERs) to GDP projections in order
to compare and aggregate GDP across regions. For the purpose of
comparison, SSP projections for GDP are converted from their original
purchasing power parity (PPP) values to MER values using the base
year PPP factors (World Bank, 2014), where a convergence of future
PPP values to one is assumed, based on a country's GDPpc growth
compared to the US GDPpc growth.

Fig. 5 shows the range of model projections for GDP per capita.
By 2050 the models project world GDP per capita to be in the range
of $12,000–22,0007; in the range of $11,000–22,000 for Latin America;
in the range of $12,000–31,000 for Mexico, and in the range of
$10,000–$26,000 for Brazil. All of the participating models project a
population that is getting wealthier over time; e.g., in 2005–2010,
7 In this paper, monetary units are in year 2005 US$, unless stated otherwise.

https://secure.iiasa.ac.at/web-apps/ene/LAMPDB/


Fig. 3. Population projections in the core baseline scenarios of the participating models. Shaded area indicates the range of SSP projections (KC. and Lutz, accepted for publication).
Please note that the y-axes of these figures are all different, and truncated for readability.
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GDP per capita was lower than $10,000 in all countries and regional
aggregations.

3.3. Energy

Fig. 6 compares the composition of primary energy use over time:
historical data from 2005 (IEA, 2012a,b) and model projections
for 2020 and 2050. Total energy use differs across the models and
Fig. 4. GDP projections in the core baseline scenarios of the participating models. Shaded area
different, and truncated for readability.
in some cases the differences are quite substantial both at the
global and individual country levels. However, most of the models
project a continuing reliance on fossil fuels (coal, oil, natural gas)
throughout the period 2020–2050. In addition, most of the models
project an increasing role of natural gas. Most of the disagreement
between models is related to biomass energy use and the role
of coal. This is partly due to different treatments of biomass in tra-
ditional and industrial use across models and partly a reflection of
indicates the range of SSP projections. Please note that the y-axes of these figures are all



Fig. 5.GDP per capita projections in the core baseline scenarios of the participating models. Shaded area indicates the range of SSP projections. Please note that the y-axes of these figures
are all different, and truncated for readability.
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different assumptions regarding the future growth of biomass. By
2050 some models (POLES, in particular) project a substantial con-
tribution from wind and solar energy. This variety between models
is closely related to different directions of the changes projected in
the power sector, where some models project a growing role for
coal, whereas other models expect a larger role for natural gas
and biomass energy (for a more in-depth discussion of the power
sector see van der Zwaan et al., in this issue). Moreover, several
models made assumptions on non-climate policies that influence the
choice for energy sources (see the Appendix A for an overview of
Fig. 6. Primary energy use for the world, Latin America, Brazil and Mexico in 20
model assumptions). For instance, TIAM-WORLD made assumptions
on air pollution constraints that limit the penetration of conventional
coal power plants and IMAGE and TIAM-ECN made assumptions en-
force the use of renewable energy sources based on existing policies.

3.4. Fossil and industrial CO2 emissions

Carbon dioxide emissions steadily grow in all model projections
for the core baseline scenarios, as shown in Fig. 7. Global emissions
from fossil fuel use and industrial production grow from
05, 2020 and 2050 in the core baseline scenarios of participating models.



Fig. 7.CO2 emissions from fossil fuels and industry for theworld, Latin America,Mexico and Brazil. Please note that the y-axes of thesefigures are all different, and truncated for readability.

506 B.J. van Ruijven et al. / Energy Economics 56 (2016) 499–512
approximately 30,000 Mt CO2 in 2005 to approximately 46,000–
75,000 Mt CO2 in 2050. Emissions in Latin America are projected to
grow from 1400–1700 Mt CO2 in 2005 to approximately 2200–
4350 Mt CO2 in 2050. Brazil and Mexico are the major contributors
to Latin America's emissions. Brazil's emissions are projected to
grow from approximately 400 Mt CO2 in 2005 to approximately
800–1600 Mt CO2 in 2050, and Mexico's emissions are projected to
grow from approximately 450 Mt CO2 in 2005 to approximately
700–1100 Mt CO2 in 2050.

4. Decomposition of drivers

To understand what is driving the change in emissions over time,
it is useful to decompose the relative contribution of the factors of the
Kaya identity (Kaya and Yokobori, 1997):

C ¼ P � Q
P
� E
Q
� C

E

where

C Carbon emissions (Mt CO2)
P Population (Million)
Q GDP (Billion US$2005)
E Primary energy use (EJ)

By taking logs of both sides of the Kaya identity, the growth rate of
carbon emissions is approximated by the sum of the growth rates of
the Kaya factors.

The figures below compare the Kaya factors in two historical periods
(1990–2000 and 2000–2010) and four forecast periods (2010–2020,
2020–2030, 2030–2040, and 2040–2050), including the range of
model forecasts. The box in these figures represents the 25%–75%
quartile of model results and the “whiskers” or lines represent the min
and max of the model results.

From Fig. 8, we see that most of the growth in global carbon emis-
sions (both historically and projected) is driven by increases in GDP
per capita, population, and the carbon intensity of energy (CO2/Energy),
which is dampened slightly by negative growth in the energy intensity
of output (Energy/GDP). These graphs also show the variation in these
factors across models. Although population growth is consistent across
most models (around 2% between 2005 and 2020), there is much
more variation with respect to the other factors. Model variation is
highest in the energy intensity of output (E/GDP) and GDP per capita.
In particular, some models project a fall in energy/GDP while other
models project a slight increase.

Looking at Latin America only (Fig. 9), we see that, except for
population, the growth of each of the Kaya factors stays constant over
time. Therefore, the fall in the growth of carbon emissions in Latin
America is largely the result of a fall in population growth. Comparing
projected versus historical values, we see that the models project a
much more negative growth in energy intensity than what has been
observed historically. GDP growth is also projected to be much higher
than what has been observed historically.

There is significant variation across models. Some models are
projecting large growth in the carbon intensity of energy, due to a
shift in the composition of energy to more carbon intensive forms of
energy over time (see Fig. 6), while somemodels project amoremodest
increase in carbon intensity. The range of projections for total carbon
emission by 2050 of all participating models is between 2000 and
4500 Mt CO2/year, although there is a clear clustering around 3500 Mt
CO2/year. Compared to similar analyses for the Asian Modeling
Exercise (Blanford et al., 2012) this range of core baseline emission
projections is narrower than for Asia. Fig. 9 shows that this is mostly
due to counteracting assumptions on economic growth and energy
intensity, both of which show large variation, but leading to a relatively
small range for the growth in total CO2 emissions.

In the cases of Brazil (Fig. 10) and Mexico (Fig. 11), we see a similar
trend with the growth in carbon emission being driven largely by
positive growth in the carbon intensity of energy and income
(GDP/pop). However, the growth in emissions in Mexico is constant
over time while the growth in emissions in Brazil is falling. In the
case of Mexico, except for population, the growth in the Kaya factors
is almost constant over the forecast period. This is in contrast with
the historical period which shows an increase in the growth of
energy intensity, but a fall in the growth of GDP per capita, the
carbon intensity of energy, and population. In the case of Brazil, we
see a fall in the growth of population and the carbon intensity of
energy which is driving the fall in carbon emissions growth. The



Fig. 8. Kaya decomposition of global core baseline scenarios.
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growth in carbon intensity of energy in Brazil is falling due to a shift
toward biomass energy and gas, as shown in Fig. 6. Variation in
model results is significantly higher in the case of Brazil than in
Mexico for all of the Kaya factors (except population). This is
reflected in the large variation in projections of carbon emissions
growth in Brazil across models.
5. A comparison of historic trends and core baseline scenarios

Historically, annual economic growth of Latin America as a whole
ranged between 2% and 5% between the years 1990 and 2010, with
an average annual growth rate of 3.2% (left panel in Fig. 12).8 Brazil's
economy is the largest in the region, making up approximately one
third of total Latin American GDP, followed by Mexico's economy
which makes up about one fourth. After 2004, Brazil's annual GDP
growth rates exceed those of Mexico and are even twice as high as
Mexico's in 2010. Other Latin American countries, such as Argentina,
Chile, Venezuela, Peru and Colombia, experienced annual GDP growth
rates above the average for Latin America over the last two decades.
Comparing Latin America, and in particular Brazil, to the other BRIC
countries, namely India, Russia and China, India and China experienced
much higher economic growth between 1990 and 2010 than the other
BRIC countries (Fig. 12). Russia experienced higher GDP growth after
the year 2000. However, in per capita terms, Latin America's GDP per
capita is still considerably higher than China and India— approximately
five times higher than in India and about twice as high as in China in
2010 (right panel of Fig. 12). GDP per capita increased in Latin
America from 4000 US$ in 1990 to 4600 US$ in 2000 and 5600 US$ in
2010. Among the wealthiest economies in Latin America, Mexico and
Chile had the highest GDP per capita in 2010 with 8500 US$ and 8700
US$ respectively, which is roughly one third higher than GDP per capita
in Russia and about 30% below the OECD average GDP per capita.

Primary energy intensity (defined as primary energy use per GDP)
has been similar across Latin American countries and relatively constant
over time, with an average primary energy intensity in Latin America of
approximately 11 MJ/US$ over the past 40 years (Fig. 13). Since 2000
primary energy intensity in Argentina and Venezuela has been higher
than the average in Latin America and lower than the average in
Mexico, Colombia and Peru. This is partly determined by the fuel
conversion efficiency of the whole energy sector, because the primary
energy intensity decreases with increasing fuel conversion at constant
8 GDP growth calculated based on market exchange rates (MER) and a 5-year average.
GDP and final energy consumption. Hence, this indicator is positively
influenced in regions with a high overall fuel conversion efficiency,
e.g. due to vast deployment of hydro power. Vice versa, there is a
negative effect on primary energy efficiency of GDP for regions which
heavily dependon fossil fuels combusted in low-efficiency technologies,
such as Venezuela, where energy consumption mainly relies on oil
products, with a substantial share of fuel consumption in refineries,
amounting to 20% in 2010, which is more than three times higher
than the average across all Latin American countries (see Fig. S1 in
ESM). Venezuela's share of renewable energy in total energy supply
was only 10% in 2010, which is half the average share in Latin
America. In contrast, Colombia covered 21% of total energy consumption
with renewable energy.

Regarding the future development of the primary energy intensity of
GDP all models in the exercise project a falling trend for Latin America.
By 2020, energy intensity is expected to fall to an average of 8.6 MJ/US$,
with a range of 8 and10MJ/US$ acrossmodels (Fig. 13). By 2050, energy
intensity is expected to fall further to an average of 6.40 MJ/US$ and a
range of 5 and 9 MJ/US$. Energy intensity in Brazil and Argentina is
expected to behigher than the average of Latin America until themiddle
of the century. Energy intensity in Mexico and Colombia, however, is
significantly lower than the average across Latin American countries.
In the case of Mexico and Columbia, somemodels project energy inten-
sities of almost 4 MJ/US$ by 2050. These low energy intensities are
supported by improvements in the efficiency of energy conversion
and the continuation of the deployment of renewable energy. In the
case of Columbia, for instance, results from TIAM-ECN show energy
efficiency improvements in the final demand sectors from 2010 until
2050 between 10% (commercial sector) and almost 30% (transport
sector) and an increase of the average efficiency of electricity
production by 12% in the same period. This development in the
electricity production is facilitated by doubling of Colombia's
hydropower capacity.

The analysis of Kaya identity in Section 3 provided several robust
findings for key energy system indicators across the participating
models. We find broadly agreement on the future development of the
Latin American energy sector among the models, which allows us
to combine multiple indicators based on the cross-model averages.
The comparison of the main indicators for the energy sector in Latin
America (Fig. 14) reveals that the 40% reduction in the energy intensity
of GDP from 2005 to 2050 is accompanied by a 70% increase in primary
energy consumption per capita, assuming no change in the emission in-
tensity of primary energy (see left panel of Fig. 14). Hence, the emission
intensity of GDP (here referring to CO2 from fossil fuel and industry)



Fig. 9. Kaya decomposition of core baseline scenarios for Latin America.
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declines similar to the energy intensity of GDP, and emissions per capita
increase. Obviously, this is the result of higher economic growth in
these countries with increasing GDP per capita. A similar trend can be
observed on the global level—trends in Latin America are close to the
world average except for CO2 emissions intensity per capita and CO2

emissions per GDP which are lower over the time horizon (see right
panel in Fig. 14). The CO2 emission intensity of primary energy stays
below the global average until 2050 since fossil fuel conversion, in par-
ticular electricity generation from coal, is expected to play a minor role
in the future energy supply mix in Latin America. The primary energy
consumption per capita in Latin America reaches the global average
around mid-century.

Across the set of participating models, we observe a more than dou-
bling of totalfinal energy consumption in Latin America bymid-century,
with a marginal increase in the share of energy use for transportation
purposes and slight decreases in the shares for industry and commer-
cial/residential (Fig. 15). Electricity, which represented approximately
15% of total final energy consumption in Latin America in 2010, is
expected to increase its role with up to a four-fold increase in final
energy consumption by 2050 (Fig. 15). Largest increases in electricity
consumption, both in relative and absolute terms, are observed in
the residential and commercial sectors due to substantial growth of
Fig. 10. Kaya decomposition of co
energy for cooling and air-conditioning as well as for information and
communication technology.

6. Discussion and conclusion

In this paper, we examine base-year assumptions and core baseline
projections of the set of models that participated in the CLIMACAP-
LAMP project. Comparing base year model assumptions to historical
data, we found relatively large differences between data sources for
population, GDP, energy and CO2 emissions. These differences largely
explain the variation in base year results across the set of models. This
variation acrossmodels should be taken into account when considering
model projections, especially for CO2 emissions and energy use. Howev-
er, the databases are generally comparable to each other. Certainly, the
range in different base year data does not have a strong impact on the
range of future model projections.

We also found that the participating models span a broad range of
population and GDP projections, comparable to the range of recently
published drivers for the Shared Socioeconomic Pathways (SSPs).
Population growth projections for Latin America, Brazil and Mexico
range from 10 to 50% between the years 2010 and 2050. At the same
time, GDP per capita projections range from a mere doubling to a
re baseline scenarios Brazil.



Fig. 11. Kaya decomposition of core baseline scenarios Mexico.
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quadrupling of 2010 levels by 2050. This results in a 2–3 fold increase in
primary energy use, leading to a 2–4 fold increase in CO2 emissions from
energy and industry between 2010 and 2050.

A Kaya-factor decomposition of the core baseline scenarios indicates
that the projected increase in emissions in Latin American countries is
mainly driven by GDP growth, population growth and a slight shift
toward more carbon intensive fuels, and dampened by reductions in
energy intensity.

Finally, we found that the trends from the core baseline scenarios
reconcile on aggregate well with trends over the past few decades in
Latin America. Projections of GDP growth are somewhat higher than
historically observed, while energy intensity improvement is slightly
higher than historical trends. Final energy mix, on the other hand,
is expected to become more dominated by electricity over the next
half century in the absence of climate policies.

The CLIMACAP-LAMP project did not assume any harmonization in
core baseline scenario assumptions. As shown in Section 3, this led to
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Fig. 12. GDP growth (left) and GDP per capita (right) in BRIC countries p
a wide range of different assumptions across the models, especially
with respect to population growth and economic development.
None of these assumptions is considered more credible than
another, and this wide range of scenarios only indicates the
variation in assumptions made by the models in this project. In no
way does it span the actual uncertainty range of potential futures
in Latin American countries.

The broad range of emission projections in these core baseline
scenarios does bring up an important issue: how useful are these core
baseline scenarios as references for determining future mitigation
commitments? Translating any percentage emission reduction below
the baseline in 2020 or 2050 to an absolute emission number comes
with a considerable uncertainty range depending on which baseline
scenario is chosen as reference. Hence, baseline-based policies are an
inherently uncertain and an unverifiable (or counterfactual) way of
formulating long-term policy commitments. This can be improved by
being extremely specific about which assumptions have been made
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for the baseline on which the policy commitment was based, and by
using such baseline-based commitments only for short term policy
goals to avoid interference of unforeseen trends, such as higher or
lower economic growth, or changes in demographic trends (Hood
et al., 2014). For instance, the range in core baseline emissions from
fossil fuel and industry for 2020 for Brazil is only 10–50% above 2010,
but for 2050 this increases to a range of 80–150% above 2010 levels.
The consequences of these baseline projections, and the efforts that
are required to bring emissions down are further discussed in Clarke
et al. (2016–in this issue).

Finally, further research may explore how global and regional or
national models compare in their capacity to represent baseline trends,
and energy and climate policies for Latin America. However, for this
purpose,more regional and national models would need to be involved.
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Appendix A. Core baseline scenario policy information, as provided
by the modeling teams
ADAGE No explicit policies taken into account
EPPA Assumed EU ETS and deforestation control policy in Brazil
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GCAM No explicit policies taken into account
IMAGE Air pollution policy influence emission factors, model

includes policies forcing renewable energy shares based
on existing energy policies.

iPETS No explicit policies taken into account
MEG4C No explicit policies taken into account
MESSAGE-Brazil No explicit policies taken into account
Phoenix No explicit policies taken into account
Poles Some policies are included, but only in non-Latin America

region (Europe, North America)
TIAM-ECN Policies on energy production from renewable energy prior

to 2010 assumed to be effective over the whole time horizon
(implemented in terms of energy production from RE)

TIAM-WORLD Limitation in the penetration of conventional coal
power plants due to local air pollution constraints.

Appendix B. Supplementary figures

Supplementary figures to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2015.02.003.
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