104 research outputs found
On electromagnetic interactions for massive mixed symmetry field
In this paper we investigate electromagnetic interactions for simplest
massive mixed symmetry field. Using frame-like gauge invariant formulation we
extend Fradkin-Vasiliev procedure, initially proposed for investigation of
gravitational interactions for massless particles in AdS space, to the case of
electromagnetic interactions for massive particles leaving in (A)dS space with
arbitrary value of cosmological constant including flat Minkowski space. At
first, as an illustration of general procedure, we re-derive our previous
results on massive spin 2 electromagnetic interactions and then we apply this
procedure to massive mixed symmetry field. These two cases are just the
simplest representatives of two general class of fields, namely completely
symmetric and mixed symmetry ones, and it is clear that the results obtained
admit straightforward generalization to higher spins as well.Comment: 17 pages. Some clarifications added. Version to appear in JHE
Gauge fields in (A)dS within the unfolded approach: algebraic aspects
It has recently been shown that generalized connections of the (A)dS space
symmetry algebra provide an effective geometric and algebraic framework for all
types of gauge fields in (A)dS, both for massless and partially-massless. The
equations of motion are equipped with a nilpotent operator called
whose cohomology groups correspond to the dynamically relevant quantities like
differential gauge parameters, dynamical fields, gauge invariant field
equations, Bianchi identities etc. In the paper the -cohomology is
computed for all gauge theories of this type and the field-theoretical
interpretation is discussed. In the simplest cases the -cohomology is
equivalent to the ordinary Lie algebra cohomology.Comment: 59 pages, replaced with revised verio
Parent formulation at the Lagrangian level
The recently proposed first-order parent formalism at the level of equations
of motion is specialized to the case of Lagrangian systems. It is shown that
for diffeomorphism-invariant theories the parent formulation takes the form of
an AKSZ-type sigma model. The proposed formulation can be also seen as a
Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach.
We also discuss its possible interpretation as a multidimensional
generalization of the Hamiltonian BFV--BRST formalism. The general construction
is illustrated by examples of (parametrized) mechanics, relativistic particle,
Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected,
references adde
Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models
We make use of O(2r+1) spinning particle models to construct linearized
higher-spin curvatures in (A)dS spaces for fields of arbitrary half-integer
spin propagating in a space of arbitrary (even) dimension: the field
potentials, whose curvatures are computed with the present models, are
spinor-tensors of mixed symmetry corresponding to Young tableaux with D/2 - 1
rows and r columns, thus reducing to totally symmetric spinor-tensors in four
dimensions. The paper generalizes similar results obtained in the context of
integer spins in (A)dS.Comment: 1+18 pages; minor changes in the notation, references updated.
Published versio
Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations
Classical conformal blocks naturally appear in the large central charge limit
of 2D Virasoro conformal blocks. In the correspondence, they
are related to classical bulk actions and are used to calculate entanglement
entropy and geodesic lengths. In this work, we discuss the identification of
classical conformal blocks and the Painlev\'e VI action showing how
isomonodromic deformations naturally appear in this context. We recover the
accessory parameter expansion of Heun's equation from the isomonodromic
-function. We also discuss how the expansion of the
-function leads to a novel approach to calculate the 4-point classical
conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli
space and monodromies, numerical and analytic checks; v2: added refs, fixed
emai
Maxwell-like Lagrangians for higher spins
We show how implementing invariance under divergence-free gauge
transformations leads to a remarkably simple Lagrangian description of massless
bosons of any spin. Our construction covers both flat and (A)dS backgrounds and
extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless
fields produce single-particle actions, while whenever trace constraints can be
dispensed with the resulting Lagrangians display the same reducible,
multi-particle spectra as those emerging from the tensionless limit of free
open-string field theory. For all explored options the corresponding kinetic
operators take essentially the same form as in the spin-one, Maxwell case.Comment: 77 pages, revised version. Erroneous interpretation and proof of the
gauge-fixing procedure for mixed-symmetry fields corrected. As a consequence,
the mixed-symmetry, one-particle Lagrangians are to be complemented with
conditions on the divergences of the fields; all other conclusions unchanged.
Additional minor changes including references added. To appear in JHE
U(N|M) quantum mechanics on Kaehler manifolds
We study the extended supersymmetric quantum mechanics, with supercharges
transforming in the fundamental representation of U(N|M), as realized in
certain one-dimensional nonlinear sigma models with Kaehler manifolds as target
space. We discuss the symmetry algebra characterizing these models and, using
operatorial methods, compute the heat kernel in the limit of short propagation
time. These models are relevant for studying the quantum properties of a
certain class of higher spin field equations in first quantization.Comment: 21 pages, a reference adde
Weyl action of two-column mixed-symmetry field and its factorization around (A)dS space
First order parent formulation for generic gauge field theories
We show how a generic gauge field theory described by a BRST differential can
systematically be reformulated as a first order parent system whose spacetime
part is determined by the de Rham differential. In the spirit of Vasiliev's
unfolded approach, this is done by extending the original space of fields so as
to include their derivatives as new independent fields together with associated
form fields. Through the inclusion of the antifield dependent part of the BRST
differential, the parent formulation can be used both for on and off-shell
formulations. For diffeomorphism invariant models, the parent formulation can
be reformulated as an AKSZ-type sigma model. Several examples, such as the
relativistic particle, parametrized theories, Yang-Mills theory, general
relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction
Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions
Cubic couplings between a complex scalar field and a tower of symmetric
tensor gauge fields of all ranks are investigated on any constant curvature
spacetime of dimension d>2. Following Noether's method, the gauge fields
interact with the scalar field via minimal coupling to the conserved currents.
A symmetric conserved current, bilinear in the scalar field and containing up
to r derivatives, is obtained for any rank r from its flat spacetime
counterpart in dimension d+1, via a radial dimensional reduction valid
precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime
of dimension d. The infinite collection of conserved currents and cubic
vertices are summarized in a compact form by making use of generating functions
and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged
discussions in Subsection 5.2 and in Conclusion, to appear in JHE
- …
