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1 Introduction

Principal bundles and Riemannian manifolds provide the right geometrical frameworks

for describing the interactions between gauge fields with respective spin one and two.

However, despite remarkable results on the interactions between higher spin gauge fields

their underlying geometrical and physical first principles remain elusive. Although a higher-

spin generalization of gravity is available through the frame-like formulation of Vasiliev (see

e.g. [1–3] for some reviews) extending the Cartan-Weyl formulation of general relativity,

the first principles analogous to the parallel transport and to the local affine covariance on

the geometrical side, or to the gauge and equivalence principles on the physical side, still

remain mysterious. The latter physical principles, underlying the low-spin interactions, are

best displayed in the minimal couplings between matter and gauge fields, so higher-spin

generalizations thereof might be a proper place to look for inspiration. Specifically, one

will concentrate here on a toy model where matter is represented by a complex scalar field.

This simplest example already proved to highlight most of the key features of the more

intricate general couplings between fields of non-vanishing spins.

– 1 –



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

The Noether (i.e. minimal) cubic couplings between a complex scalar matter field and

a collection of higher-spin tensor gauge fields have already been investigated in the metric-

like formulation on Minkowski [4–7] and anti de Sitter [7–10] spacetimes (see also the recent

work [11] in the frame-like formulation). The Noether cubic interaction between a complex

scalar field and a tensor gauge field takes place through a symmetric current, quadratic

in the scalar field and conserved at linearized level. By construction, such models are

consistent from quadratic order in the gauge and matter fields up to cubic couplings of two

scalar and the gauge fields. The present paper may be thought as a first step towards a

complete generalization to any constant curvature spacetime of the results obtained in [6]

on Minkowski spacetime. Our strategy is to derive the non-zero curvature formulas from

the flat spacetime results by performing a so-called “radial dimensional reduction” [12] also

called “ambient space formulation”, i.e. by making use of the usual isometric embedding of

(anti) de Sitter spacetime as a codimension one hyperboloid inside a flat auxilliary space.

The basic idea goes back to an early work of Dirac [13]. In the late seventies, the ambient

formulation had already been used by Fronsdal [14] in the context of higher-spin gauge

theories and, by now, this technique has become standard and has found a large number

of applications in this area (see e.g. [15–24]).

The plan of the paper is as follows: In order to be self contained, the framework

presented in [6] (i.e. the various generating functions relevant for the Noether method in

the case of gauge/matter couplings) is reviewed in section 2, but from a slightly more general

viewpoint (allowing for curved background) suited to the present analysis. In the section 3,

a dictionary between two formulations (the intrinsic and the ambient ones) of fields on non-

zero constant-curvature spacetimes is provided. The treatment is uniform with respect

to the signature and to the sign of the scalar curvature, in order to incorporate both

(anti) de Sitter spacetimes and their Euclidean counterpart, i.e. hyperspheres (hyperbolic

spaces). The infinite set of conserved currents bilinear in a free complex scalar field are

presented in section 4. The corresponding Noether cubic vertex is given in section 5 and is

written in a compact form by making use of Weyl/Wigner symbol calculus, which enables

the explicit computation of the non-Abelian gauge symmetry deformation. In the last

section 6, our main results are summarized. Some possible extensions thereof are also

suggested and motivated. Eventually, the paper ends with an appendix where a technical

proof is presented in details.

2 Noether method

Let Md be a (pseudo) Riemannian manifold of dimension d endowed with a metric gµν

(Minuscule Greek indices µ, ν, . . . will take d values and they will be lowered or raised via

the metric or its inverse) and its associated Levi-Civita connection ∇µ .

A symmetric conserved current of rank r > 1 is a real contravariant symmetric tensor

field j µ1... µr (x) on Md obeying to the conservation law

∇µ1
jµ1... µr (x) ≈ 0 . (2.1)
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where the “weak equality” symbol ≈ stands for “equal on-mass-shell,” i.e. modulo terms

proportional to the Euler-Lagrange equations. A generating function of conserved currents

is a real function j(x, p) on the phase space T ∗Md which is (i) a formal power series in the

momenta and (ii) such that
(

∇µ
∂

∂pµ

)

j(x, p) ≈ 0 . (2.2)

This terminology follows from the fact that all the coefficients of order r > 1 in the power

expansion of the generating function

j(x, p) =
∑

r>0

1

r!
jµ1... µr (x) pµ1

. . . pµr (2.3)

are all symmetric conserved currents by means of (2.2).

A symmetric tensor gauge field of rank r > 1 is a real covariant symmetric tensor field

hµ1...µr(x) on Md whose gauge transformations are of the form [14]

δεhµ1...µr(x) = r∇(µ1
εµ2...µr)(x) + O(h) , (2.4)

where the gauge parameter εµ1...µr−1
(x) is a covariant symmetric tensor field of rank r −

1, the round bracket denotes complete symmetrization with weight one, i.e. h(µ1...µr) =

hµ1...µr (remark: the tensor is symmetric by hypothesis) and O(h) stands for terms of

order one or more in the gauge fields. For lower ranks r = 1 or 2 , the transformation (2.4)

either corresponds to the U(1) gauge transformation of the vector (r = 1) gauge field

or to the linearized diffeomorphisms of the metric (r = 2). By comparison with the

spin-two case, this formulation of higher-spin gauge fields is often called “metric-like” (in

order to draw the distinction with the “frame-like” version where the gauge field is not

completely symmetric). A generating function of gauge fields is a real function h(x, v) on

the configuration space TMd (i) which is a formal power series in the velocities and (ii)

whose gauge transformations are

δεh(x, v) = (vµ∇µ) ε(x, v) + O(h) , (2.5)

where ε(x, v) is also a formal power series in the velocities. The nomenclature follows from

the fact that all the coefficients of order r > 1 in the power expansion of the generating

function

h(x, v) =
∑

r>0

1

r!
hµ1... µr (x) vµ1 . . . vµr (2.6)

are all symmetric tensor gauge fields due to (2.5) with

ε(x, v) =
∑

t>0

1

t!
εµ1... µt(x) vµ1 . . . vµt . (2.7)

In the context of Noether couplings, the “velocities” vµ and “momenta” pν are in-

terpreted as mere auxiliary variables and can be assumed to be dimensionless. Let us

– 3 –



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

introduce a non-degenerate bilinear pairing ≪ ‖ ≫ between smooth functions h(x, v) and

j(x, p) on the configuration and phase spaces respectively,

≪ h ‖ j ≫ :=

∫

Md

ddx
√

| g| exp

(

∂

∂vµ

∂

∂pµ

)

h(x, v) j(x, p)

∣

∣

∣

∣

v=p=0

. (2.8)

If j and h are (formal) power series of the form (2.3) and (2.6) then the pairing (2.8) can

be interpreted as the series

≪ h ‖ j ≫ =
∑

r>0

1

r!

∫

Md

ddx
√

| g| hµ1...µr(x) j µ1...µr (x) . (2.9)

Let us denote by ‡ the adjoint operation for the pairing (2.8) in the sense that

≪ ˆ̂
O h ‖ j ≫=≪ h ‖ ˆ̂

O‡ j ≫ , (2.10)

where
ˆ̂
O is an operator acting on the vector space of functions on configuration space (the

double hat stands for “second quantization” in the sense that the operator acts on symbols

of “first quantized” observables). Notice that (vµ)‡ = ∂/∂pµ and ∇‡
µ = −∇µ imply the

useful relation

(vµ∇µ)‡ = −
(

∇µ
∂

∂pµ

)

. (2.11)

The matter action is a functional S0[φ] of some matter fields collectively denoted by φ .

The Euler-Lagrange equations of these matter fields is such that there exists some conserved

current jµ1...µr [φ(x) ] . The Noether method for introducing interactions is essentially the

“minimal” coupling between a gauge field hµ1...µr(x) and a conserved current jµ1...µr [φ(x) ]

of the same rank. Accordingly, the Noether interaction between gauge fields and conserved

currents is the functional defined as the pairing between their generating functions

S1[φ, h] := ≪ h ‖ j ≫ =
∑

r>0

1

r!

∫

Md

ddx
√

| g| hµ1...µr(x) jµ1...µr (x) , (2.12)

where (2.9) has been used. Let us assume that there exists a gauge invariant action S[φ, h]

whose power expansion in the gauge fields starts as follows

S [φ, h] = S0[φ] + S1[φ, h] + S2[φ, h] + O(h3) . (2.13)

The gauge variation of the Noether interaction (2.12) under (2.5),

δεS1[φ, h] = ≪ δεh ‖ j ≫ +O(h) , (2.14)

is at least of order one in the gauge fields when the equations of motion for the matter

sector are obeyed,

δεS1[φ, h] ≈ O(h) , (2.15)

because the properties (2.2) and (2.11) imply that

≪
(

vµ∇µ

)

ε ‖ j ≫= − ≪ ε ‖
(

∇µ
∂

∂pµ

)

j ≫ ≈ 0 . (2.16)
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Actually, the crucial property (2.15) works term by term since

∫

Md

ddx
√

| g| ∇µ1
εµ2...µr (x) jµ1...µr(x)

= −
∫

Md

ddx
√

| g| εµ2...µr (x)∇µ1
jµ1...µr(x) ≈ 0 . (2.17)

The equation (2.15) implies that the action (2.13) might indeed be gauge-invariant at

lowest order in the gauge fields because the terms in δεS1[φ, h] that are proportional to

the Euler-Lagrange equations δS0/δφ of the matter sector could be compensated by the

variation δεS0[φ] of the matter action under a gauge transformation δεφ of the matter fields,

independent of the gauge fields h and linear in the matter fields φ , such that

δε

(

S0[φ] + S1[φ, h]
)

= O(h) . (2.18)

This possibility will be assumed from now on.

A Killing tensor field of rank r − 1 > 0 on Md is a real covariant symmetric tensor

field εµ1...µr−1
(x) solution of the generalized Killing equation

∇(µ1
εµ2...µr)(x) = 0 . (2.19)

A generating function of Killing fields is a function ε(x, v) on the configuration space TMd

which is (i) a formal power series in the velocities and (ii) such that (vµ∇µ)ε(x, v) = 0 .

Then the coefficients in the power series

ε(x, v) =
∑

t>0

1

t!
εµ1...µt(x) vµ1 . . . vµt (2.20)

are all Killing tensor fields on Md . The variation (2.4) of the gauge field vanishes at

lowest order if the gauge parameter is a Killing tensor field. Therefore the corresponding

transformation δεφ of the matter fields is a rigid symmetry of the matter action S0[φ] :

δεS0[φ] = − δεS1[φ, h]
∣

∣

h=0
= 0 , (2.21)

due to (2.18) and the fact that δεφ is independent of the gauge fields. In turn, this

shows that the conserved current jµ1...µr [φ(x) ] must be equal, on-shell and modulo a

trivial conserved current (sometimes called an “improvement”), to the Noether current

associated with the latter rigid symmetry δεφ of the matter action S0[φ] . Killing tensor

fields on constant curvature spacetimes and their link with higher-spin gauge theories were

discussed in more details in [25, 26] and references therein.

3 Ambient versus intrinsic formulations

3.1 Constant curvature manifolds

Let R
D be the flat space of dimension D > 4 parametrized by Cartesian coordinates XA

(Capital Latin indices A,B, . . . will span D values) and endowed with a non-degenerate
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diagonal metric ηAB that will be used to raise and lower Capital Latin indices. It will be

called the ambient space. The inner product will be denoted as X ·Y := ηAB XA Y B (and

X2 := ηAB XA XB). Let Md be the non-degenerate quadric of dimension d := D − 1

defined by the equation X2 = ±R2 , where R 6= 0 is its curvature radius. The sign is fixed

in the previous expression, but the ± has been included to deal with both cases at once.

From now on, the ± and ∓ symbols in the subsequent formulae will always correspond to

this respective choice of sign. For instance, the (pseudo) Riemannian manifold Md has

constant scalar curvature equal to R = ± d(d− 1)/R2.

Let us denote by xµ a set of coordinates on Md with length dimension (in the sense

that they scale in the same way as the Cartesian coordinates XA). They will be called

intrinsic coordinates. One considers an isometric smooth embedding

i : Md →֒ R
D
0 : xµ 7−→ XA(xµ) (3.1)

of the codimension-one quadricMd inside the open submanifold R
D
0 ⊂ R

D defined by

R
D
0 := {XA ∈ R

D : ±X2 > 0 } . (3.2)

The (pseudo) “spherical” coordinates (ρ, yµ) collect the “radial” coordinate ρ :=
√
±X2

together with the dimensionless “angular” coordinates yµ(:= xµ/R) of the radial projection

of the given point of R
D
0 on X2 = ±1. This coordinate system covers the manifold R

D
0 .

The submanifoldMd ⊂ R
D
0 is simply the locus such that ρ = R.

3.2 Tensor fields

Let Xr(Md) denote the space of smooth rank-r covariant tensor fields tµ1...µr(x) on Md

and Xr(R
D
0 ) the space of smooth rank-r covariant tensor fields TA1...Ar(X) on R

D
0 , both

with values in R (or C in general). The pull-back

i∗ : Xr(R
D
0 ) → Xr(Md)

: TA1...Ar(X) 7−→ tµ1...µr(x) =
∂XA1(x)

∂xµ1
· · · ∂XAr(x)

∂xµr
TA1...Ar (X(x)) (3.3)

is surjective but not injective. However, there exists a nice isomorphism between the space

Xr(Md) of rank-r tensor fields on Md and the subspace of rank-r tensor on R
D
0 that are:

(i) homogeneous of fixed non-zero homogeneity degree (say k ∈ C0),

TA1...Ar(λX) = λk TA1...Ar(X) , ∀λ ∈ C0 . (3.4)

(ii) tangent to the constant ρ submanifolds, i.e.

XAi TA1...Ai...Ar(X) = 0 (3.5)

This isomorphism was explained in details by Fronsdal in [14] but one may review the

construction as follows:

– 6 –
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The condition (i) is best understood for scalar fields (r = 0) since the condition (ii)

is absent. On the one hand, the restriction to Md maps any function Φ(X) on R
D
0 to the

function on Md given by1

φ(yµ) = Φ(ρ, yµ)|ρ = R = Φ(R, yµ) = Φ(XA)|X2=R2 . (3.6)

On the other hand, to any function φ(x) onMd one may associate a homogeneous function

Φ(X) of degree k on R
D
0 given by

Φ(XA) = Φ(ρ, yµ) =
( ρ

R

)k
Φ (R, yµ) =

( ρ

R

)k
φ (yµ) , (3.7)

whose restriction on Md reproduces φ(y) as in (3.6). This function Φ(X) is indeed of

homogeneity degree k in X (or in ρ),

Φ(λX) = λk Φ(X) , (3.8)

since X ′A = λXA is equivalent to ρ′ = λρ and y′µ = yµ (because the dimensionless

angular coordinates do not scale with respect to the Cartesian coordinates XA). The

fancy terminology “radial dimenional reduction” [12] comes from the analogy of (3.7) with

a usual dimensional reduction ansatz along the direction parametrized by z := log(ρ/R)

since then Φ(XA) = exp(kz)φ(yµ) looks like a Fourier mode ansatz (when k is pure

imaginary). More comments on this point will be made further below.

The condition (ii) takes into account the projection of the components of the ambient

tensor TA1...Ar(X) on the coordinate basis ∂/∂xµ on each tangent space through the pull-

back formula (3.3). The standard condition

∂X

∂xµ
· X = 0 (3.9)

implies that the kernel of the pull-back (3.3) for ambient vector fields V A(X) is spanned by

the radial vector fields, i.e. such that V A(X) = XAΦ(X). Therefore, the space of tangent

tensors tµ1...µr(x) ∈ T ∗
qMd at a point q ∈ Md of Cartesian coordinates XA is isomorphic

to the space of ambient tensors TA1...Ar(X) ∈ T ∗
q R

D
0 that are tangent to Md at the same

point q ∈ Md ⊂ R
D
0 or, equivalently, that are are normal to the radial direction, i.e. they

satisfy to (3.5).

The operator of orthogonal projection of ambient vectors on the tangent bundle TMd

is equal to

PB
A = δB

A −
XAXB

X2
(3.10)

where δB
A is the Kronecker delta. Indeed,

(PV )A = V A − X · V
X2

XA , X · (PV ) = 0 . (3.11)

1With a slight abuse of notation, we denote by Φ(ρ, xµ) the pull-back Φ
`

XA(ρ, xµ)
´

. Moreover, in the

sequel we will also frequently denote by φ(xµ) the function φ (yµ(x)).
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More generally,

(PT )A1...Ar := PB1

A1
. . . PBr

Ar
TB1...Br , XAi(PT )A1...Ai...Ar = 0 (3.12)

From now, all tensors will always be completely symmetric under the permutations of

indices. The leitmotiv of the present paper is to realize the space of symmetric tensor fields

on Md as a (sub)space of homogeneous symmetric tensor fields on R
D
0 . However, three

distinct but equivalent realizations prove to be useful: either the ambient tensors are

1. required to fulfill the condition XA1 TA1...Ar(X) = 0, or

2. projected by hand via the projector P, or

3. seen as equivalence classes of the relation

TA1...Ar ∼ TA1...Ar + X(A1
UA2...Ar) . (3.13)

Obviously, the first and second realization are equivalent to each other. The third realiza-

tion is equivalent to the previous ones because the latter merely correspond to a particular

choice of representative.

An important example is the induced metric, i.e. the pull-back of the flat metric ηAB

which reads in intrinsic coordinates as

gµν =
∂XA

∂xµ

∂XB

∂xν
ηAB =

∂X

∂xµ
· ∂X

∂xν
, (3.14)

which will be used to raise and lower the minuscule Greek indices. The induced metric can

be represented by the ambient tensor

GAB = PC
A PD

B ηCD = ηAB −
XAXB

X2
(3.15)

which is in the image of the projection operator P and obeys to the transversality condition

XAGAB = 0. Notice that the ambient tensor GAB representing the induced metric gµν is

in the same equivalence class as the ambient metric, GAB ∼ ηAB , as it should. Moreover,

GB
A = PB

A .

3.3 Covariant derivatives

The main technical difficulty in the ambient formulation is the translation of ambient partial

derivatives ∂A in terms of intrinsic covariant derivatives. In order to overcome this obstacle,

a generating function performing the translation rule is provided in this subsection.

Let ∇µ be the covariant derivative corresponding to the Levi-Civita connection on the

(pseudo) Riemannian manifold Md. Its representative D in the ambient space R
D
0 is the

operator

D = P ◦ ∂ ◦ P . (3.16)

A similar formulation of the covariant derivative in terms of the ambient partial derivative

has been used in [15, 16]. For instance, the covariant derivative ∇µvν of a vector field vµ

on Md ⊂ R
D
0 is represented in ambient space as

DAVB := PC
A PD

B ∂C(PE
D VE) (3.17)

– 8 –



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

Geometrically, the definition (3.17) means that the infinitesimal parallel transportation of

a vector field vµ onMd can be performed in ambient space in three steps as follows: firstly,

project on the tangent bundle TMd its ambient representative VA; secondly, infinitesimal

parallel transport the resulting vector with respect to the ambient space metric; finally,

project again the result on TMd. Algebraically, the first step is the projection (3.11), the

second step is the mere partial derivation ∂C , so that the third step indeed gives (3.17). One

may prove algebraically that the definition (3.16) indeed implements the unique Levi-Civita

connection ∇ on Md by checking that D verifies the following three axioms:

- Leibnitz rule:

DA(Φ1 Φ2) = (DAΦ1)Φ2 + Φ1DAΦ2 ↔ ∇µ(φ1φ2) = (∇µφ1)φ2 +φ1∇µφ2 , (3.18)

- Metricity: DA GBC = 0 ↔ ∇µgνρ = 0 ,

- Torsionlessness: [DA,DB ]Φ = 0 ↔ [∇µ,∇ν ]φ = 0 .

More concretely, the definition (3.16) reads in components as

DATB1...Br := PC
A PD1

B1
. . .PDr

Br
∂C

(

PE1

D1
. . . PEr

Dr
TE1...Er

)

(3.19)

where the definition (3.12) of the projector P was used. Although this formula provides

a nice way to compute covariant derivatives via mere partial derivations in ambient space,

the intermediate projections quickly become cumbersome when the rank of the tensor or

the number of derivatives becomes large. Fortunately, it is possible to obtain an explicit

formula relating the usual partial derivatives in ambient space to the symmetrized covari-

ant derivatives.

In order to express general formulae in compact terms, a standard trick is to contract

every index with an auxiliary vector, say PA :

T (X,P ) = PA1 . . . PAr TA1...Ar(X) ,

(P · ∂)n = PA1 . . . PAn ∂A1
. . . ∂An ,

(P · D)n = PA1 . . . PAnD(A1
. . .DAn) ,

P 2 = PAPB ηAB . (3.20)

One may express recursively the powers of ambient partial derivatives ∂ like polynomials

of the covariant derivatives D and the flat metric:

(P · ∂)n T (X,P ) =

[n/2]
∑

m=0

cm
n

(

P 2

X2

)m

(P · D)n−2m T (X,P ) (3.21)

where [q] is the integer part of the rational number q and the coefficients cm
n should be

determined. The dependence of these coefficients cm
n on the homogeneity degree k in X

and r in P will be left implicit for not overloading the formulae. Notice that, by hypothesis,

cm
n = 0 when m > (n + 1)/2 and c0

n = 1 for all n ∈ N. The equation (3.21) amounts

– 9 –
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to the following dictionary between ambient partial derivatives and intrinsic symmetrized

covariant derivatives

∂(A1
. . . ∂AnTAn+1...Ar+n) ←→

←→
[n/2]
∑

m=0

cm
n

( ±1

R2

)m

g(µ1µ2
. . . gµ2m−1µ2m ∇µ2m+1

. . .∇µn tµn+1...µr+n) . (3.22)

In appendix, one shows that the function (analytic near the origin)

c(x, y; k − r) =
∞
∑

n=0

[n/2]
∑

m=0

1

n!
cm
n xn−2m ym = (1 + y)

k−r
2 exp

(

x√
y

arctan
√

y

)

(3.23)

is a generating function for the cm
n coefficients. The non-vanishing coefficients for m <

(n + 1)/2 can be written explicitly by identifying the relevant coefficients in the power

expansion (given for r = 0):

cm
n =

m
∑

in − 2m=0

in − 2m
∑

in− 2m −1=0

. . .

i2
∑

i1=0

1

(m− in−2m)!

(

k

2

)(

k

2
−1

)

. . .

(

k

2
−m + in−2m + 1

)

×

× n!

(n− 2m)!

(−1)in − 2m

(2 i1 + 1) (2 (i2 − i1) + 1) . . . (2 (in − 2m − in− 2m−1) + 1)
.

For instance, the first coefficients are

c0
0 = 1 ,

c0
1 = 1 ,

c0
2 = 1 , c1

2 = k ,

c0
3 = 1 , c1

3 = 3k − 2 ,

c0
4 = 1 , c1

4 = 2 (3k − 4) , c2
4 = 3k (k − 2) ,

. . . . . . . . .

Therefore (3.22) provides, for instance, the following translation rules:

∂AΦ ←→ ∇µ φ

∂A ∂BΦ ←→ ∇(µ∇ν)φ ±
k

R2
gµν φ

∂A ∂B∂CΦ ←→ ∇(µ∇ν∇ρ) φ ± 3k − 2

R2
g(µν ∇ρ)φ

∂A ∂B∂C∂DΦ ←→ ∇(µ∇ν∇ρ∇σ) φ ± 2 (3k − 4)

R2
g(µν ∇ρ∇σ)φ

+
3k (k − 2)

R4
g(µν gρσ) φ (3.24)

...

Notice that a most compact and useful way to summarize (3.21) is as

T (X + t P , P ) = c(t P · D , t2 P 2/X2 ; k − r)T (X,P ) , ∀t , (3.25)
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as can be seen from the Taylor expansion of

T (X + tP, P ) = exp(t P · ∂)T (X,P ) =

∞
∑

n=0

tn

n!
(P · ∂)nT (X,P ) (3.26)

in power series of t.

3.4 Laplace-Beltrami operators

Combining the definitions (3.15) and (3.16) of the last two subsections, one finds that

the Laplace-Beltrami operator ∇2 = gµν ∇µ∇ν is represented in ambient space by

GAB DADB . On rank-r symmetric tensor fields, it acts as follows

∇2tµ1...µr(x)←→ GBC DB DCTA1...Ar(X) ∼

∼
[

∂2 − 1

X2
(X · ∂) (X · ∂ + D − 2 − r)

]

TA1...Ar(X) (3.27)

as can be checked explicitly. Therefore, the action of the ambient Laplace-Beltrami operator

∂2 = ηAB∂A∂B on ambient symmetric tensor fields of homogeneity degree k is translated

in intrinsic components as follows

∂2 TA1...Ar(X) ←→
[

∇2 ± 1

R2
k (k + d − 1 − r)

]

tµ1...µr(x) . (3.28)

For scalar fields (r = 0), one recovers the standard formulae for the eigenvalues of the

Laplace-Beltrami operator for the “spherical” harmonics in any dimension. In particular,

when the number of timelike directions in the signature of the ambient metric η is equal

to:

• Zero (Euclidean), the quadric X2 = R2 is a hypersphere,Md = Sd, which can be seen

as the Wick rotation of the de Sitter spacetime space dSd. A textbook material on

group theory is the fact that the genuine spherical harmonics with fixed homogeneity,

kSd = ℓ ∈ N , (3.29)

span unitary irreducible representations of o (d+1). These spherical harmonics are the

evaluation φ(x) on Sd of homogeneous harmonic polynomials Φ(X) such that (3.7),

∂2 Φ(X) = 0 ←→
[

∆Sd +
1

R2
ℓ (ℓ + d − 1)

]

φ(x) = 0 . (3.30)

• One (Lorentzian), the one-sheeted hyperboloid X2 = +R2 is the de Sitter spacetime,

Md = dSd, while the two-sheeted hyperboloid X2 = −R2 is (two copies of) the

hyperbolic space, Md = Hd. The unitary irreducible representations of o (1, d) cor-

responding to massive scalar fields have been studied a while ago in [27] and belong

to the principal continuous series. They can be realized as the evaluation φ(x) on dSd

of homogeneous harmonic functions Φ(X) of complex homogeneity degree kdSd
∈ C

such that

Re(kdSd
) = 1 − D

2
=

1− d

2
, Im (kdSd

) = µ , (3.31)
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where µ is a parameter with mass dimension. This implies that the wave equation

reads as

∂2 Φ(X) = 0 ←→
[

∇2
dSd
− 1

R2

(

(

d − 1

2

)2

+ µ2

)]

φ(x) = 0 . (3.32)

• Two (Conformal), the one-sheeted hyperboloid X2 = −R2 is the anti de Sitter space-

time,Md = AdSd, whose Wick rotation is the previous (two copies of the) hyperbolic

space Hd. The lowest weight unitary irreducible representations of o (2, d − 1) cor-

responding to massive scalar fields on (the universal covering of) AdSd with energy

bounded from below are well known (see e.g. [28] for a nice review). They can be

realized as the evaluation φ(x) on AdSd of homogeneous harmonic functions Φ(X) of

real homogeneity degree kAdSd
∈ R such that

kAdSd
= 1 − D

2
+ µ =

1− d

2
+ µ . (3.33)

In any case, the corresponding wave equation is

∂2 Φ(X) = 0 ←→
[

∇2
AdSd

+
1

R2

(

(

d − 1

2

)2

− µ2

)]

φ(x) = 0 . (3.34)

To summarize, the wave equation for a unitary massive scalar field on (A)dSd is

∇2
(A)dSd

φ(x) =
1

R2

(

±
(

d − 1

2

)2

+ µ2

)

φ(x) = m2 φ(x) , (3.35)

where, as mentioned before the ± symbol refers to the corresponding equation X2 = ±R2.

Thus the unitary bound on the “mass square” (or, better, the eigenvalue of the quadratic

Casimir operator of the isometry algebra) of a scalar field on (A)dSd is determined by the

inequality
(

mR
)2

:= ±
(

d − 1

2

)2

+ µ2
> ±

(

d − 1

2

)2

, (3.36)

which reproduces the Breitenlohner-Freedman bound [29] in the AdSd case where (naive)

“tachyonic” fields may be unitary and stable. As one can see, the massive scalar field on

AdSd may be obtained as the analytic continuation of the massive scalar fields on dSd

where µ (and R) is replaced by −iµ (and −iR).

For later purpose, let us denote the ambient scalar field Φ†(X) as being the function

on R
D
0 whose homogeneity degree k†

(A)dSd
is equal to k(A)dSd

up to the substitution of µ by

−µ in (3.31) or (3.33) respectively, and whose evaluation on (A)dSd is equal to φ∗(y), i.e.

Φ†(XA) = Φ†(ρ, yµ) =
( ρ

R

)k†

φ∗(yµ) . (3.37)

This homogeneous function Φ†(X) is also harmonic and the complex conjugate φ∗(x) sat-

isfies to the same wave equation (3.35). A compact way to summarize the respective
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Object Ambient space R
D
0 Constant-curvature spacetime Md

Coordinates XA xµ

Scalar Φ(X) φ(x)

Conjugate Φ†(X) φ∗(x)

Vector TA(X) tµ(x)

Tensor TA1...Ar(X) tµ1...µr (x)

Metric GAB ∼ ηAB gµν

Covariant derivative DA ∇µ

Spacetime Laplacian D2 = GAB DADB ∇2 = gµν ∇µ∇ν

Ambient Laplacian ∂2 = ηAB ∂A ∂B ∇2 ± 1
R2 k (k + d − 1)

Table 1. Dictionary Ambient space/Constant-curvature spacetime.

homogeneity degrees on (A)dSd is as follows:

k(A)dSd
= 1 − D

2
+
√
∓1 µ =

1− d

2
+
√
∓1 µ ,

k†

(A)dSd
= 1 − D

2
−
√
∓1 µ =

1− d

2
−
√
∓1 µ , (3.38)

where, once again, the ± symbol refers to the corresponding equation X2 = ±R2. Notice

also the useful identities

±
(

mR
)2

= − k(A)dSd
(k(A)dSd

+ d − 1)

= − k†

(A)dSd
(k†

(A)dSd
+ d − 1) , (3.39)

= k†

(A)dSd
k(A)dSd

.

In the AdS/CFT litterature, the opposite of kAdSd
and k†

AdSd
are usually denoted by ∆+

and ∆−.

Various ambient/spacetime notations that have been introduced so far are summarized

in the table 1.

3.5 Klein-Gordon action

The quadratic action of a complex massive scalar field on (A)dSd reads, modulo a boundary

term, as

S0[φ] = − 1

2

∫

(A)dSd

ddx
√

| g|
(

gµν∂µφ∗(x)∂νφ(x) + m2 |φ(x)|2
)

. (3.40)

It can be rewritten in the ambient formulation where the covariance under all isometries

is manifest,

S0[φ] = −
∫

R
D
0

dDX |X2| 12 δ(X2 ∓R2)×

×
(

GAB∂AΦ†(X) ∂BΦ(X) ± (mR)2

X2
Φ†(X)Φ(X)

)

. (3.41)

– 13 –



J
H
E
P
1
1
(
2
0
1
0
)
1
1
6

In (pseudo) spherical coordinates, the volume form reads as

dDX = dρ
( ρ

R

)d
ddx

√

| g(x)| , (3.42)

In order to check the equality (3.41), one should rewrite the integral over R
D
0 in (pseudo)

spherical coordinates, insert the homogeneity conditions (3.7) and (3.37) as well as the

following relation on the Dirac delta function,

|X2| 12 δ(X2 ∓R2) = ρ δ(ρ2 ∓R2) =
ρ

|ρ + R| δ(ρ − R) =
1

2
δ(ρ − R) , (3.43)

and, finally, integrate over the radial coordinate ρ from zero to infinity.

There is also an alternative way to obtain the spacetime integral (3.40) in a form where

the covariance under all isometries is manifest: along the lines of the radial dimensional

reduction from massless to massive fields and from flat to curved spacetimes [12], one may

instead remove the Dirac delta δ(ρ− R) in the integral over the ambient space. With the

help of (3.39) and

GAB∂AΦ†(X) ∂BΦ(X) = ηAB∂AΦ†(X) ∂BΦ(X) − 1

X2
(X · ∂)Φ†(X) (X · ∂)Φ(X) , (3.44)

together with (3.42), one can show that

S0[Φ] := −1

2

∫

R
D
0

dDX ηAB∂AΦ†(X) ∂BΦ(X)

= −1

2

∫

R
D
0

dDX

(

GAB∂AΦ†(X) ∂BΦ(X) ± (mR)2

X2
Φ†(X)Φ(X)

)

(3.45)

= R

∫ ∞

0
dz × S0[φ]

where the integral over z on the right-hand-side is simply a constant factor (albeit infinite)

Remember that z = log(ρ/R) and (ρ/R)k = exp(k z). The analogy of (3.45) with a dimen-

sional reduction along a (non-compact) direction further justified the choice of terminology

“radial dimensional reduction” in [12]. This interpretation is somewhat more natural in

dSd where the radial direction is spacelike (though non-compact) as it should and where

Φ† is simply the complex conjugate of Φ. In this analogy, the parameter µ plays the usual

role of the mass for the Fourier factor exp(i µ z). The basis of the radial dimensional reduc-

tion technique is the observation that, since the kinetic operator for massless fields on flat

spacetime is scale invariant, the homogeneity condition on the fields is a consistent ansatz.

Moreover, the homogeneity degree must be chosen such that the action on the flat ambient

space is also scale invariant.

3.6 Noether method

The ambient formalism developed above should also be applied to the whole content of the

section 2. In this subsequent, one introduces various definitions dedicated to an ambient

reformulation of section 2, preparing the ground for the next two sections.
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The ambient representative of a symmetric conserved current of rank r > 1, say jµ1... µr ,

is an equivalence class J A1... Ar ∼ JA1...Ar + X(A1UA2...Ar) of real contravariant homoge-

neous symmetric tensor fields on R
D
0 of homogeneity degree equal to 2−D − r where one

of the representative obeys to the strict conservation law

∂A1
JA1... Ar(X) ≈ 0 . (3.46)

The homogeneity degree,

(XA∂A + D − 2 + r)JA1...Ar(X) = 0 , (3.47)

is chosen such that the equation (3.46) is preserved by the equivalence relation, as can

be checked directly and as will be shown later in a more economical way. This property

implies the covariant conservation law

DA1
JA1... Ar(X) ≈ 0 . (3.48)

corresponding to (2.1), even though the representative JA1... Ar(X) satisfying (3.46) may

not be tangent. An ambient generating function of conserved currents is an equivalence

class

J(X,P ) ∼ J(X,P ) + (X ·P )U(X,P ) ⇐⇒ JA1...Ar ∼ JA1...Ar + r X(A1UA2...Ar) . (3.49)

of real functions on the phase space T ∗
R

D
0 which are (i) formal power series in the momenta,

(ii) such that
(

XA ∂

∂XA
+ PA

∂

∂PA
+ D − 2

)

J(X,P ) = 0 , (3.50)

(

XA ∂

∂XA
+ PA

∂

∂PA
+ D

)

U(X,P ) = 0 , (3.51)

and (iii) where one of the representatives obeys to
(

∂

∂XA

∂

∂PA

)

J(X,P ) ≈ 0 . (3.52)

The commutation relation
[

∂

∂XA

∂

∂PA
, XBPB

]

= XA ∂

∂XA
+ PA

∂

∂PA
+ D (3.53)

implies that, provided the homogeneity condition (3.50) is satisfied (which is consistent

with the radial reduction ansatz), the ambient divergence is well defined on equivalence

classes of currents, i.e.

J1 ∼ J2 =⇒
(

∂

∂XA

∂

∂PA

)

J1 ∼
(

∂

∂XA

∂

∂PA

)

J2 , (3.54)

because [∂X · ∂P , X · P ]U = 0 due to (3.51). Therefore, the current is covariantly diver-

genceless
(

DA
∂

∂PA

)

J(X,P ) ≈ 0 (3.55)
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when (3.50) holds since (3.52) and (3.54) imply (3.55). Thus all the coefficients of order

r > 1 in the power expansion of the generating function

J(X,P ) =
∑

r>0

1

r!
JA1... Ar(X)PA1

. . . PAr (3.56)

are all ambient representative of conserved currents by means of (3.55).

The ambient representative of a symmetric tensor gauge field of rank r > 1, say

hµ1...µr(x), is a real covariant homogeneous symmetric tangent tensor field HA1...Ar(X) on

R
D
0 of homogeneity degree equal to r − 2 whose gauge transformations are of the form

δǫHA1...Ar(X) = r ∂(A1
ǫA2...Ar)(X) + O(H) = rD(A1

ǫA2...Ar)(X) + O(H) , (3.57)

where the gauge parameter ǫA1...Ar−1
(X) is a covariant homogeneous symmetric tangent

tensor field on R
D
0 of rank r − 1 and of homogeneity degree r − 1. The homogeneity

degrees are such that the symmetrized gradient of ǫ is tangent, as can be checked by direct

computation, so that ∂(A1
ǫA2...Ar)(X) = D(A1

ǫA2...Ar)(X). An ambient generating function

of gauge fields is a real function H(X,V ) on the configuration space TR
D
0 (i) which is a

formal power series in the velocities, (ii) such that

(

XA ∂

∂XA
− V A ∂

∂V A
+ 2

)

H(X,V ) = 0 ,

(

XA ∂

∂V A

)

H(X,V ) = 0 , (3.58)

and (iii) whose gauge transformations are

δǫH(X,V ) =
(

V A∂A

)

ǫ(X,V ) + O(H) =
(

V ADA

)

ǫ(X,V ) + O(H) , (3.59)

where ǫ(X,V ) is a formal power series in the velocities such that

(

XA ∂

∂XA
− V A ∂

∂V A

)

ǫ(X,V ) = 0 ,

(

XA ∂

∂V A

)

ǫ(X,V ) = 0 . (3.60)

The commutation relation

[

XA ∂

∂V A
, V B ∂

∂XB

]

= XA ∂

∂XA
− V A ∂

∂V A
, (3.61)

implies that, provided (3.60) is satisfied, then (X ·∂V )δǫH(X,V ) = O(H). The coefficients

of order r > 1 in the power expansion of the generating function

H(X,V ) =
∑

r>0

1

r!
HA1... Ar(x)V A1 . . . V Ar (3.62)

are all ambient representatives of symmetric tensor gauge fields due to (2.5) with

ǫ(X,V ) =
∑

t>0

1

t!
ǫA1...At(X)V A1 . . . V At . (3.63)
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The non-degenerate bilinear pairing (2.8) between smooth functions h(x, v) and j(x, p)

on the configuration and phase spaces respectively, can be written in terms of the ambient

representatives in a similar fashion to (3.41):

≪ h ‖ j ≫ := 2

∫

R
D
0

dDX|X2| 12 δ(X2 ∓R2) exp

(

∂

∂V A

∂

∂PA

)

H(X,V )J(X,P )

∣

∣

∣

∣

V =P=0

= 2
∑

r>0

1

r!

∫

RD
0

dDX |X2| 12 δ(X2 ∓R2) HA1...Ar(X)J A1...Ar(X) . (3.64)

Another option is to follow the philosophy of the radial dimensional reduction, as in (3.45),

≪ H ‖J ≫ :=

∫

R
D
0

dDX exp

(

∂

∂V A

∂

∂PA

)

H(X,V )J(X,P )

∣

∣

∣

∣

V =P=0

(3.65)

=
∑

r>0

1

r!

∫

R
D
0

dDX HA1...Ar(X)J A1...Ar(X)

= R

∫ ∞

0
dz ≪ h ‖ j ≫

where the integrand of the integral over R
D
0 on the second line is of homogeneity degree

equal to −D as it should. This shows that if the conserved currents of the matter fields

on a flat spacetime define ambient representatives with the right properties (such as their

degree of homogeneity) then the radial dimensional reduction of the Noether interaction

can be applied:

S1[Φ,H] := ≪ H ‖J ≫

= R

∫ ∞

0
dz × S1[φ, h] (3.66)

The ambient representative of a Killing tensor field of rank r − 1 > 0 on Md is a

covariant homogeneous symmetric tangent tensor field ǫA1...Ar−1
(X) on R

D
0 of degree r− 1

solution of the generalized Killing equation

∂(A1
ǫA2...Ar)(X) = 0 . (3.67)

An ambient generating function of Killing fields is a function ǫ(X,V ) on the configuration

space TR
D
0 which is a formal power series in X [AV B] := XAV B − XBV A. Then the

coefficients in the power series

ǫ(X,V ) = ǫ
(

X [AV B]
)

=
∑

t>0

1

t!
ǫA1...At(X)V A1 . . . V At (3.68)

provide the most general ambient representatives of Killing tensor fields onMd (see e.g. [25,

26, 30] for reviews and refs therein).

In the next two sections, these general facts will be applied to the case of a free complex

scalar field.
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4 Conserved currents

The generating function of conserved currents on the flat ambient space [6] is equal to

J(X,P ) = Φ† (X − i P ) Φ (X + i P ) (4.1)

so that the corresponding ambient conserved currents take the explicit form

JA1...Ar(X) = i r
r
∑

s=0

(−1)s
(

r

s

)

∂(A1
. . . ∂AsΦ

†(X) ∂As+1
. . . ∂Ar)Φ(X)

= i r Φ†(X)
←→
∂A1

. . .
←→
∂ArΦ(X) (4.2)

where the usual double arrow
←→
∂ is defined by

Φ
←→
∂AΨ := Φ(∂AΨ) − (∂AΦ)Ψ . (4.3)

These flat space currents (4.2) are proportional to the ones introduced by Berends, Burgers

and van Dam a long time ago [4]. Various explicit sets of (conformal) conserved currents

on Minkowski spacetime were provided in [31–34]. The symmetric conserved current (4.2)

of rank r is bilinear in the scalar field and contains exactly r derivatives. The currents

of any rank are real thus, if the scalar field is real then the odd rank currents are absent

due to the factor in front of (4.2). The generating function (4.1) verifies (3.52) when

the ambient scalar field Φ obeys to the Klein-Gordon equation. Although the ambient

currents (4.2) are not tangent in general, they obey to (3.50) for homogeneous ambient

scalar fields corresponding to massive scalar fields on (A)dSd, since (3.38) implies

k(A)dSd
+ k†

(A)dSd
= 2−D , (4.4)

and therefore the previous equation (3.52) is equivalent to the covariant conservation

law (2.1). In other words, the radial dimensional reduction of the cubic Noether inter-

action is valid precisely for the mass-square domain of unitarity in (A)dSd.

The main drawback of the explicit expressions (4.2) for the conserved currents is that

it is written in terms of ambient partial derivatives instead of covariant derivatives, but

the ambient generating function (4.1) of (A)dSd conserved currents can be written very

explicitly in terms of (3.23) with the help of (3.25)

J(X,P ) = c

(

− i P · D ,−P 2

X2
; k†

(A)dSd

)

Φ†(X) c

(

i P · D ,−P 2

X2
; k(A)dSd

)

Φ(X)

= Φ†(X) c

(

− i P · ←−D ,−P 2

X2
; k†

(A)dSd

)

c

(

i P · −→D ,−P 2

X2
; k(A)dSd

)

Φ(X)

= Φ†(X) c

(

i P · ←→D ,−P 2

X2
; 2−D

)

Φ(X) (4.5)

where the property c(x1, y ; k1)c(x2, y ; k2) = c(x1 + x2, y ; k1 + k2) and (3.38) were used.

The ambient generating function (4.5) translates into the following generating function of

conserved currents

j (x, p) = φ∗(x) c

(

i pµ←→∇ µ ,∓gµνpµpν

R2
; 1− d

)

φ(x) (4.6)
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The flat limit is recovered for R2 → ∞ since c(x, y) ∼ exp x when y → 0. Due to (3.23),

the development (2.3) of this generating function gives the following conserved current of

rank r,

jµ1...µr(x) = i r

[r/2]
∑

m=0

( ∓1

R2

)m

cm
r g(µ1µ2

. . . gµ2m−1µ2m φ∗(x)
←→∇ µ2m+1

. . .
←→∇ µr)φ(x) , (4.7)

where the coefficients cm
r correspond to k = 1 − d. It is possible to compute numerically

these coefficients cm
r , the covariant derivatives (3.25) and these currents from (4.7) whatever

the rank. For example, we therefore find the first currents, which are all preserved by

construction and which was also verified explicitly, calculated classically:

jµ = i φ∗←→∇ µφ

jµν = −φ∗←→∇ µ
←→∇ ν φ ± 1 − d

R2
gµν φ∗ φ

jµνρ = − i φ∗←→∇ (µ
←→∇ ν
←→∇ ρ) φ ± i

1 − 3d

R2
g(µν φ∗←→∇ ρ) φ

jµνρσ = φ∗←→∇ (µ
←→∇ ν
←→∇ ρ
←→∇ σ) φ ± 2

1 + 3d

R2
g(µν φ∗←→∇ ρ

←→∇ σ)φ

+ 3
d2 − 1

R4
g(µν gρσ)φ

∗ φ

...

Similar conserved currents on constant-curvature spaces were described in [7–9, 35, 36]

but the present results are somewhat more general: firstly, the currents (4.2) are conserved

for any free massive scalar field in any dimension, while only the conformal scalar (i.e. the

singleton) was considered in [8, 9] and AdS3 was the background spacetime in [35, 36];

secondly, the explicit expression of the currents is known at all orders in the scalar

curvature, while only the first order correction to the flat expression was provided in [8, 9];

thirdly, the currents (4.2) are conserved on-shell in the usual sense of (2.1) while the

ones of [7] obey to the weaker conservation law introduced by Fronsdal [14]. Of course,

strictly speaking the third comment should not be understood as a loss of generality in

the previous results of [7, 10]. We simply want to stress that usual conservation laws for

the currents is a desirable property because it allows a uniform treatment of (ir)reducible

gauge fields, e.g. of triplet and Fronsdal fields, and it might also simplify the analysis of

current exchange amplitudes.

5 Noether interactions

As explained in the previous section, the function (4.1) obeys to all properties for an am-

bient generating function of conserved currents, as defined in subsection 3.6. Therefore,

the radial dimensional reduction of the corresponding ambient Noether interaction (3.65)

is consistent and provides the Noether interaction (2.9) on (A)dSd where the conserved

currents are given by (4.7). An important consequence of this fact is that one can import
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from flat spacetime all relationships (observed in [6]) between the Noether interactions

of a complex scalar field with a collection of symmetric tensor gauge fields. In other

words, the consistency of the radial dimensional reduction implies that one can induce the

Weyl/Wigner technology used in [6] from the flat ambient space R
D
0 onto the spacetime

(A)dSd. In this way, one reproduces the ambient approach to the Weyl/Wigner quanti-

zation of the cotangent bundle T ∗Md of a constant-curvature manifold, which was first

introduced in the seminal papers on deformation quantisation with humor under the name

“a star product is born” [37, 38]. The relevance of the latter approach to higher-spin gauge

theory on (anti) de Sitter spacetime was argued in [30].

5.1 Symbol calculus

Let us become more explicit. To start with, since R
D
0 and (A)dSd are endowed with a

metric, their respective tangent and cotangent spaces may be identified and thus one can

identify “momenta” with “velocities”, e.g.

PA = ηAB V B and pµ = gµνvν . (5.1)

The ambient generating function of gauge fields H(X,P ) is now a real function on T ∗
R

D
0

such that

(

XA ∂

∂XA
− PA

∂

∂PA
+ 2

)

H(X,P ) = 0 ,

(

X · ∂

∂P

)

H(X,P ) = 0 , (5.2)

and whose gauge transformations are

δǫH(X,P ) =

(

P · ∂

∂X

)

ǫ(X,P ) + O(H) , (5.3)

where ǫ(X,P ) is such that

(

XA ∂

∂XA
− PA

∂

∂PA

)

ǫ(X,P ) = 0 ,

(

X · ∂

∂P

)

ǫ(X,P ) = 0 . (5.4)

The cotangent bundle T ∗Md can be seen as the sub-bundle of R
D
0 defined by the quadric

definition X2 = ±R2 together with the transversality condition XAPA = 0. As symplectic

manifolds, this embedding corresponds to a reduction with respect to the previous two

constraints.

The ambient Moyal product of two smooth functions on T ∗
R

D
0 is defined by

ǫ1(X,P ) ⋆ ǫ2(X,P ) = ǫ1(X,P ) exp

(

1

2

←−−
∂

∂PA
∧
−−−→

∂

∂XA

)

ǫ2(X,P ) (5.5)

where ∧ stands for the antisymmetric product. The conditions (5.4) on ǫ(X,P ) are equiv-

alent to

[X · P ⋆, ǫ(X,P )] = 0 , [X2 ⋆, ǫ(X,P )] = 0 . (5.6)
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where

[ǫ1(X,P ) ⋆, ǫ2(X,P ) ] := ǫ1(X,P ) ⋆ ǫ2(X,P )− ǫ2(X,P ) ⋆ ǫ1(X,P )

= ǫ1(X,P ) 2 sinh

(

1

2

←−−
∂

∂PA
∧
−−−→

∂

∂XA

)

ǫ2(X,P ) (5.7)

denotes the ambient Moyal commutator. The conditions (5.6) expressed in terms of the

Hermitian operator ǫ̂ the Weyl symbol of which is ǫ(X,P ) state that this operator preserves

the homogeneity degree and commutes with X2. The evaluation ε(x, p) of the ambient rep-

resentatives ǫ(X,P ) provides an isomorphism between the space of smooth functions on

T ∗Md and the (sub)space of smooth functions on T ∗
R

D
0 which are subject to (5.6). More-

over, the space of symbols obeying to (5.6) is a subalgebra of the ambient Weyl algebra.

Therefore the pull-back of the Moyal product on T ∗
R

D
0 induces a star product ∗ on the

cotangent bundle T ∗Md such that the former isomorphism becomes an isomorphism of

associative algebras, as pointed out by Bayen, Flato, Fronsdal, Lichnerowicz and Stern-

heimer in [37, 38]. Notice that the Lie algebra of smooth functions on T ∗Md endowed

with the corresponding star commutator [ ∗, ] is isomorphic to the Lie algebra of Hermitian

(pseudo)differential operators onMd. The adjoint action of this Lie algebra preserves the

space of Weyl symbols such that (5.2) and the gauge transformations (5.3) can be written

as

δǫH(X,P ) =
1

2
[P 2 ⋆, ǫ(X,P )] + O(H) . (5.8)

The ambient generating functions of Killing fields ǫ(X,P ) are Weyl symbols commuting

with the three constraints X2, X · P and P 2 which generate an sp(2) algebra. The Lie

(sub)algebra of such symbols is the off-shell higher-spin algebra of Vasiliev (see e.g. [1–3]

for reviews).

5.2 Cubic vertex

Using the bra-ket notation for the scalar field Φ(X) = 〈X | Φ 〉 and Φ†(X) = 〈Φ | X 〉, the

ambient generating function J(X,P ) of currents (4.1) is the (analytic continuation of the)

Fourier transform over momentum space of the Wigner function associated to the density

operator |Φ 〉〈Φ | and the ambient Noether interaction (3.65) can be rewritten in a compact

form as [6]

S1[Φ,H] = ≪ H ‖J ≫ = 〈Φ | Ĥ |Φ 〉 (5.9)

where H(X,P ) is the Weyl symbol of the operator Ĥ.

The ambient Klein-Gordon action (3.45) can be rewritten along the same lines as

S0[Φ] = 〈Φ | Ĥ0 |Φ 〉 (5.10)

where the operator Ĥ0 is defined by

Ĥ0 :=
1

2

[

∂2 − 1

X2
(X · ∂) (X · ∂ + D − 2)∓ (mR)2

X2

]

(5.11)
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and is the ambient representative of the kinetic operator 1
2 (∇2

AdSd
− m2). It has Weyl

symbol equal to

H0(X,P ) :=
1

2

(

GABPAPB ∓
(mR)2

X2

)

=
1

2

(

P 2 − (X · P )2

X2
∓ (mR)2

X2

)

(5.12)

where the transverse inverse metric GAB := ηAB−XAXB/X2 is the ambient representative

of the inverse metric gµν on (A)dSd . Remark that the function H0(X,P ) also obeys to (5.2).

Therefore the sum

S0[Φ] + S1[Φ,H] = 〈Φ | Ĥ0 + Ĥ |Φ 〉 (5.13)

is manifestly invariant under the following action of the group of unitary operators on

(A)dSd:

|Φ 〉 −→ Û |Φ 〉 , Ĥ0 + Ĥ −→ Û (Ĥ0 + Ĥ) Û−1 , (5.14)

where the unitary operator Û is generated by the Hermitian operator ǫ̂ and where the scalar

and gauge fields respectively transform in the fundamental and adjoint representation of

the group of unitary operators. Notice that the action of the operator Û on Φ(X) is indeed

consistent with the radial dimensional reduction because this unitary operator preserves

the homogeneity degree as ǫ̂ does. Notice that as long as higher-derivative transformations

are allowed then the infinite tower of higher-spin fields should be included for consistency

of the gauge transformations (5.14) beyond the lowest order. The infinitesimal adjoint

action (5.14) of the Lie algebra of Hermitian operators on (A)dSd, written in terms of the

Weyl symbol H(X,P ), leads to the following deformation of (5.8)

δǫH(X,P ) = [H0(X,P ) + H(X,P ) ⋆, ǫ(X,P )] + O(H2) . (5.15)

The ambient generating functions of Killing fields ǫ(X,P ) are Weyl symbols that are prod-

uct of X[APB], whose corresponding operators are products of the isometry generators

X[A∂B] of (A)dSd, i.e. generators of the Vasiliev off-shell higher-spin algebra. When the

latter algebra acts on the singleton module of o(d− 1, 2), the three sp(2)-constraints men-

tioned at the end of subsection 5.1 act trivially. The quotient of the Vasiliev off-shell algebra

by the corresponding two-sided ideal (spanned by elements that are sum of elements pro-

portional to a sp(2)-constraint) is the Vasiliev on-shell higher-spin algebra (see e.g. [1–3]

for more details). The situation is somewhat different for the massive scalar field module

spanned by the harmonic homogeneous functions on the ambient space of subsection 3.4,

because this module is not annihilated by the operators corresponding to X2 and X ·P (see

e.g. the section 3 of [30] for some discussion on the algebra of symmetries of the massive

scalar field).

It is very tempting to conjecture that the full action (2.13) should be interpreted

as arising from the gauging of the rigid symmetries of the free scalar matter field, which

generalize the U(1) and isometries of (A)dSd, so that the local symmetries (5.14) generalize

the local U(1) and diffeomorphisms (see [5–7, 30] and refs therein for more comments on

this point of view). In any case, the unfolded equations (on-shell [1–3] and off-shell [39, 40])
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precisely arise from the gauging of the same rigid algebra of (on/off shell) symmetries but

the scalar field is included in the gauge field multiplet.

To end up with a side remark, we would like to point out the possibility to have

a uniform treatment of the gauge fields and parameters where both generating functions

have equal homogeneity degree in X and in P . This possibility might prove to be useful for

further works because this treatment allows to make use of the star commutator induced

onMd [37, 38] in order to write down the intrinsic form of the gauge transformation (5.8).

Moreover a uniform treatment of fields and parameters is appealing in the metric-like

approach since their generating functions can both be interpreted as Weyl symbols of

Hermitian (pseudo)differential operators on the spacetime manifold. Concretely, notice

that H(X,P ) := X2H(X,P ) obeys to

(

XA ∂

∂XA
− PA

∂

∂PA

)

H(X,P ) = 0 ,

(

X · ∂

∂P

)

H(X,P ) = 0 , (5.16)

as follows from (5.2). The same holds for

H0(X,P ) =
1

2
X2

(

GABPAPB ∓
(mR)2

X2

)

=
1

2

(

X2 P 2 − (X · P )2 ∓ (mR)2
)

(5.17)

which corresponds to the Weyl symbol ±R2

2 gµνpµpν . One can check that

[H0(X,P ) ⋆, ǫ(X,P ) ] =

(

X2 +
1

4

∂

∂P
· ∂

∂P

)

(PA∂A) ǫ(X,P ) (5.18)

by making use of the identity

2 [X2 P 2 − (X ·P )2 ⋆, ǫ(X,P ) ] = X2 ⋆ [P 2 ⋆, ǫ(X,P ) ] + [P 2 ⋆, ǫ(X,P ) ] ⋆X2 . (5.19)

Therefore the star commutator between the (A)dSd background field gµνpµpν and any

function ε(x, p) on the cotangent bundle T ∗(A)dSn above is equal to

1

2
[ gµνpµpν

∗, ε(x, p) ] =

(

1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)

(pµ∇µ) ε(x, p) . (5.20)

Therefore, modulo the field redefinition,

h′(x, p) =

(

1 ± 1

4R2
gµν

∂

∂pµ

∂

∂pν

)

h(x, p) , (5.21)

the lowest order of the gauge transformation (2.5) can be expressed directly via the star

product on (A)dSd

δεh
′(x, p) =

1

2
[ gµνpµpν

⋆, ε(x, p) ] + O(h′) (5.22)

in analogy with (5.8).
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6 Conclusion and outlook

The present paper may be thought as a first step towards a generalization to any constant-

curvature spacetime of the results obtained in [6] for a complex scalar field around

Minkowski spacetime, such as the generating functions of conserved currents, of inter-

action vertices, of gauge symmetry deformations and of four-point exchange amplitudes.

Besides the exchange amplitudes, all these results have been generalized here to the case

of non-vanishing curvature. Recently, the results of [6] were considerably extended via

string-based computations by Sagnotti and Taronna [41, 42] and it would be interesting to

investigate the possibility of a radial dimensional reduction of their elegant results, looking

for the analogue of their generating functions to (anti) de Sitter spacetimes. We plan to

return to these issues in the future.

The generating function of the infinite set of conserved currents for a free complex

scalar field on (A)dSd have been obtained from the flat one [6] through a radial dimensional

reduction. For this purpose, an efficient translation rule between ambient partial deriva-

tives and intrinsic (i.e. spacetime) covariant derivatives was developed. The form of the

current generating function on ambient space is identical to the bilocal function introduced

by Fronsdal [14] in order to provide a manifestly covariant realization of the theorem [43]

asserting that the tensor product of two scalar singleton on the conformal boundary decom-

poses as an infinite tower of bulk gauge fields. This similarity is by no mean accidental since

the Flato-Fronsdal theorem is known to be instrumental in the holographic correspondence

between free conformal field theories on the boundary and higher-spin gauge field theories

in the bulk but it might deserve to be investigated further in the ambient formulation.

Through the Noether method, the current generating function allows to write a gener-

ating function of cubic minimal couplings and to determine the corresponding gauge sym-

metry deformations. Our results confirm some previous expectations on the non-Abelian

deformation of the metric-like gauge symmetry as being the group of unitary operators

on the spacetime manifold, thereby generalizing the group of diffeomorphisms. It was

extremely convenient to remove trace constraints on the gauge parameters when reflect-

ing on the non-Abelian symmetries in the metric-like formulation of higher-spin gauge

fields (see e.g. [30] for an extended discussion of this point). As far as the non-Abelian

frame-like formulation is concerned, the analogue of Vasiliev’s unfolded equations in the

unconstrained case are also of interest for studying the off-shell gauge symmetry struc-

ture [39, 40]. Moreover, a slight refinement of the on-shell unfolded equations has been

proposed in [44] following the spirit of the unconstrained approach. The recent frame-like

formalism with weaker trace constraints [45] might also shed some light in these directions.

Notice that, at the order where we worked (at most quadratic dependence in the gauge

fields), it is perfectly consistent to make use of traceful currents in the “minimal” coupling

between gauge fields and currents. However, the quadratic action for the gauge fields will

determine the genuine physical interactions between the matter and gauge fields. Indeed,

the gauge fields may also couple to other fields, dynamical or not (e.g. auxilliary and pure

gauge fields), and these couplings will affect the on-shell structure of the interactions. For

instance, if the quadratic gauge field action is the Fronsdal action [14] then the double-
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trace of the current is automatically extracted out off-shell and the single-trace further

decouples on-shell. It is known since the seminal works of Francia and Sagnotti that the

trace constraints may consistently be removed off-shell from the metric-like quadratic action

in several ways for irreducible gauge fields (see e.g. [46, 47] for some reviews and [24, 48]

for some recent developments). Nevertheless, the trace of the current still decouples on-

shell as it should [24]. For the so-called “triplet” arising from the open string leading

Regge trajectory [46, 47, 49–53] (see also [10, 23]), the situation is more subtle: although

traceful conserved currents can indeed source the symmetric tensor field, only the traceless

component of the currents studied here leads to genuine minimal interactions.2 The kth

trace of the current of rank r is a current of rank r − 2k (lower than r) and contains r

derivatives. However, any non-trivial rank-s conserved current built from a scalar field is

known to contain up to s derivatives. Therefore, any trace component of the current is equal

on-shell either to zero or to an “improvement”, i.e. a trivially conserved (or, equivalently,

co-exact) current. Such on-shell trivial currents give rise to non-minimal interactions,

quadratic in the scalar fields and linear in the gauge-invariant higher-spin fieldstrengths.

Finally, the toy model [6] has been used to calculate tree level exchange amplitudes for

the elastic scattering of two scalar particles mediated by an infinite tower of tensor gauge

fields. The AdSd counterparts of Feynman diagrams with four external scalar particles

should be Witten diagrams associated with the four-point correlation function of a singlet

(“single trace”) scalar operator, bilinear in some large component massless scalar field liv-

ing on the conformal boundary, as in [54, 55]. The exact summation of the corresponding

exchange amplitudes for an infinite tower of intermediate tensor gauge fields is possible in

flat spacetime [6] and one might hope to reproduce the analogue of this result in AdSd since

all ingredients are now available in the unconstrained formalism for irreducible gauge fields:

the bulk-to-bulk propagators of symmetric tensor fields can be extracted from [24] and the

relevant cubic vertices have been presented here.3 Moreover, the CFTd−1 dual results

are known in closed form, even for the interacting O(N) model in the large N limit [56].

Computing explicitly the AdSd exchange Witten diagram could therefore provide a first

quantitative test of the AdS4/CFT3 conjecture of Klebanov and Polyakov [55] at quartic

level, i.e. for four-point correlation functions. Indeed, while impressive quantitative checks

of the correspondence have been performed at the interacting level [57–60], to our knowl-

edge all of them were restricted yet to three-point correlation functions where symmetries

are known to highly constrain the set of possibilities.
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A Technical appendix

Let us consider a homogeneous symmetric tensor of rank r such that (XB∂B −
k)TA1...Ar(X) = 0 and XA1 TA1...Ar(X) = 0. These last two properties together with

the definitions of the projector (3.10) and the equivalence relation (3.13) imply that

∂A

(

PD1

B1
. . .PDn

Bn
PE1

C1
. . .PEr

Cr
∂D1

. . . ∂DnTE1...Er

)

∼

∼ ∂A∂B1
. . . ∂BnTC1...Cr −

1

X2
n (XD∂D) ηA(B1

∂B2
. . . ∂Bn)TC1...Cr −

− 1

X2
r XE ∂B1

. . . ∂BnTE(C2...Cr
ηC1)A

= ∂A∂B1
. . . ∂BnTC1...Cr −

1

X2
n
(

k − (n− 1)
)

ηA(B1
∂B2

. . . ∂Bn)TC1...Cr +

+
1

X2
r n ∂(B2

. . . ∂BnTB1)(C2...Cr
ηC1)A

Contracting all indices with an auxiliary vector P and making use of the notations (3.19)

and (3.20), one gets that

(P · D) (P · ∂)nT = (P · ∂)n+1 T − n
P 2

X2

(

k − r − (n− 1)
)

(P · ∂)n−1 T (A.1)

The left-hand-side of (A.1) can be expressed by

(P · D) (P · ∂)n T = (P · D)

[n/2]
∑

m=0

cm
n

(

P 2

X2

)r

(P · D)n−2r T

= c0
n (P · D)n+1 +

[n/2]
∑

m=1

cm
n

(

P 2

X2

)m

(P · D)n−2m+1 T .

where (3.21) has been inserted in order to compute (P · ∂)n. The right-hand-side of (A.1)

can also be reexpressed as follows

(P · ∂)n+1 T − n
P 2

X2
(k − r − (n− 1)) (P · ∂)n−1 T

= c0
n (P · D)n+1 T +

[(n+1)/2]
∑

m=1

(

P 2

X2

)m

(P · D)n+1−2m [cm
n+1 − n(k − r − n + 1) cm−1

n−1 ]T .

by making use twice of (3.21) in order to calculate (P · ∂)n+1 and (P · ∂)n−1. These

equations imply that the coefficients cm
n are given by the recurrence formula:

cm
n+1 = cm

n + n (k − r − n + 1) cm−1
n−1 (A.2)

and for n odd, there is an additional relation:

c
(n+1)/2
n+1 = n(k − r − n + 1) c

(n−1)/2
n−1 . (A.3)

If one considers the cm
n as the coefficients of a power (a priori formal) series

f(x; y) =

∞
∑

n=0

∞
∑

m=0

1

n!
cm
n xn ym , (A.4)
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one can rewrite the recursion formula (A.2) as an ordinary differential equation

(parametrized by the “constant” y) for the unkown function f(x, y) depending on the

single variable x

(1 + x2 y)
d

dx
f(x, y) −

(

1 + (k − r)xy
)

f(x, y) = 0 (A.5)

with the initial condition f(0, y) = 1. The solution of this Cauchy problem is:

f(x, y) = (1 + y x2)
k−r
2 exp

(

1√
y

arctan (
√

y x)

)

. (A.6)

The generating function c(x, y; k) is equal to f(x, y/x2).
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